Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cholesterol serves as a fundamental molecule in various structural and biochemical pathways; however, high cholesterol levels are linked to cardiovascular diseases. Some selected strains of Lactobacilli are known for modulating cholesterol levels. However, the molecular mechanism underlying cholesterol transformation by lactobacilli has remained elusive. This study describes the discovery and function of a microbial 3β-OH-Δ-cholesterol-5β-reductase (5βChR) from Limosilactobacillus fermentum NKN51, which directly converts cholesterol to coprostanol, thereby unraveling this longstanding mystery. Protein engineering of the reductase enzyme identified the cholesterol and NADPH interacting amino acid residues, detailing the catalytic mechanism of 5βChR. Phylogenetic analyses highlight the prevalence of 5βChRs in gut commensal lactobacilli, which share a common evolutionary origin with plant 5β reductases. Meta-analysis of microbiomes from healthy individuals underscores the importance of 5βChR homologs, while a cohort study demonstrates an inverse association between 5βChR abundance and diabetes. The discovery of the 5βChR enzyme and its molecular mechanism in cholesterol metabolism paves the way for a better understanding of the gut-associated microbiome and the design of practical applications to ameliorate dyslipidemia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.70131DOI Listing

Publication Analysis

Top Keywords

cholesterol
8
cholesterol coprostanol
8
cholesterol levels
8
molecular mechanism
8
5βchr
5
discovery mechanistic
4
mechanistic characterization
4
characterization probiotic-origin
4
probiotic-origin 3β-oh-Δ-cholesterol-5β-reductase
4
3β-oh-Δ-cholesterol-5β-reductase directly
4

Similar Publications

Background And Aims: Several observational studies have reported inconsistent associations between dyslipidaemia, stains use and atopic dermatitis (AD). Nevertheless, the available data on the effects of -C-lowering as well as TG-lowering drugs remain inconclusive and limited. The aim of this study was to evaluate the causal association of lipid traits and long-term use of lipid-lowering drugs on AD risk.

View Article and Find Full Text PDF

Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.

View Article and Find Full Text PDF

Introduction: is a spiral-shaped Gram-negative, enterohepatic bacterium classified as a conditional pathogen (pathogenicity group 2). It is known to cause bacteremia and a variety of other diseases in humans. In particular, has been shown to impair intracellular cholesterol metabolism when interacting with macrophages, leading to foam cell formation.

View Article and Find Full Text PDF

The role of cholesterol metabolism in antiviral immunity has been established, but if and how this cholesterol-mediated immunometabolism can be regulated by specific small molecules is of particular interest in the quest for novel antiviral therapeutics. Here, we first demonstrate that NPC1 is the key cholesterol transporter for suppressing viral replication by changing cholesterol metabolism and triggering the innate immune response via systemic analyses of all possible cholesterol transporters. We then use the Connectivity Map (CMap), a systematic methodology for identifying functional connections between genetic perturbations and drug actions, to screen NPC1 inhibitors, and found that bis-benzylisoquinoline alkaloids (BBAs) exhibit high efficacy in the inhibition of viral infections.

View Article and Find Full Text PDF

Introduction: Cigarette smoking is a well-recognized independent risk factor for numerous cardiovascular disorders and contributes to the increasing morbidity and mortality associated with chronic heart diseases (CHD). This study aimed to evaluate how cigarette smoking affects lipid metabolism and inflammatory processes, along with other related mechanisms, in order to better understand the potential cardiovascular risks faced by smokers.

Objectives: To evaluate and compare the serum lipid profile and high-sensitivity C-reactive protein levels between cigarette smokers and non-smokers.

View Article and Find Full Text PDF