98%
921
2 minutes
20
This research utilized recycled acetate fibers from discarded cigarette butts (CBs) as reinforcing materials, reducing solid waste and enhancing the properties of bitumen. The surface properties of the fibers significantly impacted the binder characteristics. The treatment of CB fibers with anhydrous ethanol was employed to remove the plasticizer glycerol triacetate (GTA), enabling the better homogeneity of the fibers in the binder. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to assess the effectiveness of the fiber treatment. A dynamic shear rheometer (DSR) was used to explore the properties of bitumen with varying CB contents (0%, 0.25%, 0.75%, and 1.25% by weight). A whole life cycle analysis further confirmed the eco-efficiency of CB binders. The results show that the pretreatment effectively removed GTA, leading to a more homogeneous dispersion of fibers in the binder. Adding CBs can significantly improve bitumen properties, but this effect does not increase with higher dosages; when the CB content exceeded 1.25%, a reduction in fatigue resistance was observed. Among the tested dosages, the optimal amount was 0.75%, which improved the high-temperature performance of the binder by 2.7 times, the medium-temperature fatigue life by 1.78 times, and the low-temperature performance by 1.08 times. In terms of ecological benefits, the addition of CB fibers to bitumen pavement reduced carbon emissions by two-thirds compared to traditional bitumen pavement, resulting in a significant decrease in carbon emissions. This study provides valuable insights into the construction of sustainable transportation infrastructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073044 | PMC |
http://dx.doi.org/10.3390/ma18092059 | DOI Listing |
Materials (Basel)
August 2025
Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064, China.
Filler dramatically affects the rheology of cold-patched asphalt (CPA) slurry, as well as the related mechanical properties; its physical and chemical properties will also affect the road performance of cold-patch asphalt mixture (CPAM). In order to optimize the filler composition ratio for CPAM, this study uses an orthogonal test to determine the optimal ratio of bentonite to cement, partially substituting mineral powder. Additionally, a performance verification test suitable for CPAM is designed and performed.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
School of Intelligent Construction and Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China.
To explore the influence of waste plastics on the self-healing ability of bitumen, the healing effect of multiple damages, and enlarge the utility of waste plastic in pavement through dynamic shear rheology (DSR) tests, multiple repeated loading tests with fatigue-healing-fatigue as the basic cycle were conducted on modified bitumen samples containing five types of waste plastics (PET, HDPE, PP, PS, and PVC) with different dosages. The damage healing ability of bitumen of the same waste plastic with different dosage ratios and the same dosage of different waste plastics under the same healing time, loading strain, and damage degree through single and multiple loading were explored and analyzed. The results show that based on the three sets of data of the complex shear modulus, phase angle, and fatigue factor, the PS and PVC-modified bitumen have a better recovery performance than that of the other three types of modified bitumen, and the latter also has the best fatigue resistance property.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China.
Three-dimensional reconstruction programs are essential tools for understanding the behavior of asphalt mixtures. On the basis of accurate 3D models, it is convenient to identify the complex relationship between spatial structures and physical properties. In this work, we explore a low-cost and data-efficient way to create a collection of 3D asphalt mixture models.
View Article and Find Full Text PDFGels
July 2025
Department of Electrical Engineering, College of Science and Technology, University of Nottingham Ningbo China, Ningbo 315100, China.
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2025
School of Civil and Hydraulic Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China.
Plastics are widely used as modifiers to enhance asphalt pavement performance due to their distinctive molecular structure. However, there is still limited theoretical analysis of the effect of plastics on the aging behavior of SBS-modified asphalt on a molecular scale. Therefore, in this study, molecular dynamics software was used to establish aging behavior of SBS-modified asphalt with different types of plastics (polyethylene (PE), polypropylene (PP), and poly acrylic (PA)).
View Article and Find Full Text PDF