A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Improving Laser Powder Bed Fusion IN718 Process Development Efficiency by Eliminating Pore Defects of Specified Size. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid identification of process windows in laser powder bed fusion (L-PBF) additive manufacturing garnered significant attention for its ability to reduce upfront engineering costs. This study focuses on accelerating the development of process windows by targeting the elimination of specific-size pore defects in L-PBF IN718. A novel relative density-porosity similarity evaluation method (DPSEM) is introduced to evaluate the reliability of porosity data derived from computed tomography (CT). Using the response surface method, the fully dense forming window (e.g., relative density ≥ 99%) was accurately located within a wide process parameter range (18-1000 J/mm) in a single test. Comparative analysis with the relative density (RD) model highlighted differences in solution set distribution, positioning efficiency, microstructure, and performance within the process window. Results demonstrate that the proposed method effectively eliminates specified size defects (90 μm), achieving a maximum density of 99.5% alongside excellent mechanical properties, including an ultimate tensile strength of 1155 MPa and a yield strength of 908 MPa. In contrast, the RD model achieved a lower maximum density of 98.5%, with mechanical performance compromised by significant MC compound precipitation and keyhole pore accumulation, resulting in an ultimate tensile strength slightly exceeding 910 MPa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072660PMC
http://dx.doi.org/10.3390/ma18091929DOI Listing

Publication Analysis

Top Keywords

laser powder
8
powder bed
8
bed fusion
8
pore defects
8
process windows
8
relative density
8
maximum density
8
ultimate tensile
8
tensile strength
8
process
5

Similar Publications