Low MXene Loading of Epoxy Composite with Enhanced Hydrothermal Resistance.

Polymers (Basel)

Beijing Gas Huanneng Engineering & Technologies Co., Ltd., Beijing 100020, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work focuses on the hydrothermal aging of two-dimensional layered TiCT (MXene)/epoxy (EP) nanocomposites. MXene/EP composites were successfully prepared by homogeneously dispersing multilayer MXene (m-MXene) and few-layer MXene (f-MXene) into the curing agent, methyl nadic anhydride (MNA). Considering the application, the MXene loading was designed to be 0.1 wt.%. Characterization included the characteristics of MXene, the water absorption behavior of the resin and composite samples, the glass transition temperatures () in various states, and the tensile strength evolution during aging. The curing behavior of the MXene composites was also discussed to facilitate an understanding of the processability. The results showed that MNA can chemically bond with MXene to obtain a stable suspension. The addition of MXene increased the curing characteristic temperature of the system, but the change in the activation energy of the curing reaction was minimal. The addition of MXene decreased the crosslink density of the epoxy resin, leading to a decrease in the value of the initial samples. After hydrothermal aging, the of pure EP decreased by 46.9 °C, and re-drying the samples did not fully restore the . However, the of the MXene/EP system decreased by only 8.9 °C (m-MXene) and 9.5 °C (f-MXene), respectively, and the values of the samples were fully restored to their pre-aging levels via re-drying. Experiments with immersion at 25 °C and 100 °C showed that the difference in water absorption behavior between the MXene/EP and pure EP systems was minimal. Tensile tests showed that the addition of MXene increased the initial strength of the resin system by 14.7% (m-MXene) and 20.9% (f-MXene). After 400 h of hydrothermal aging, the tensile strength retention of the pure EP samples was 69.1%, while the strength retention of the MXene/EP samples was 85.3% (m-MXene) and 83.0% (f-MXene). The combined results demonstrate that the addition of MXene with a low loading of only 0.1% can effectively improve the hydrothermal resistance of epoxy resins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073684PMC
http://dx.doi.org/10.3390/polym17091229DOI Listing

Publication Analysis

Top Keywords

addition mxene
16
hydrothermal aging
12
mxene
10
mxene loading
8
hydrothermal resistance
8
water absorption
8
absorption behavior
8
tensile strength
8
mxene increased
8
samples fully
8

Similar Publications

Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.

View Article and Find Full Text PDF

Emergent ferromagnetism on the surface of two-dimensional (2D) MXene is investigated by X-ray magnetic circular dichroism (XMCD) and angle-dependent hard X-ray photoemission spectroscopy (HAXPES). Focusing on CrN as one of the 2D-MXenes, high quality bilayers of CrN/Co and CrN/Pt are prepared by a magnetron sputtering technique. XMCD reveals the induced magnetic moment of Cr in the CrN/Co interface, while it is not observed in the CrN/Pt interface at room temperature.

View Article and Find Full Text PDF

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF

Incorporation of MXene into BiS Matrix Promotes Better Electron Transport and Enhanced Thermoelectric Figure of Merit.

ACS Appl Mater Interfaces

September 2025

Plasmonics and Perovskites Laboratory, Department of Materials Science and Engineering, IIT Kanpur, Kanpur, U.P. 208016, India.

Contrary to the state-of-the-art thermoelectrics, such as tellurides and selenides, the thermoelectric performance of earth-abundant and less toxic BiS has been found to be inferior primarily because of poor electron transport. Herein, a less explored approach of composite formation using nanoinclusions of two-dimensional (2D) MXene, a graphene-analogous material, in BiS has been adopted to tailor the transport properties in order to obtain enhanced thermoelectric figure of merit (). Highly conductive stacked sheets of TiCT MXene, incorporated into the matrix of BiS, facilitate smoother electron transport, resulting in significantly enhanced electrical conductivity.

View Article and Find Full Text PDF

Kidney transplant recipients face a high risk of acute rejection (AR), where the immune system attacks the transplanted organ. Current diagnostics rely on invasive biopsies with procedural risks, costs, and limited temporal resolution. While urinary chemokines CXCL9 and CXCL10 are promising non-invasive AR biomarkers, clinical adoption is limited by labor-intensive detection and lack of point-of-care (POC) solutions.

View Article and Find Full Text PDF