Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transcription factors (TFs) are fundamental regulators of gene expression and perform diverse functions in cellular processes. The management of 3-dimensional (3D) genome conformation and gene expression relies primarily on TFs. TFs are crucial regulators of gene expression, performing various roles in biological processes. They attract transcriptional machinery to the enhancers or promoters of specific genes, thereby activating or inhibiting transcription. Identifying these TFs is a significant step towards understanding cellular gene expression mechanisms. Due to the time-consuming and labor-intensive nature of experimental methods, the development of computational models is essential. In this work, we introduced a two-layer prediction framework based on a support vector machine (SVM) using the latent space representation of a protein language model, ProtBert. The first layer of the method reliably predicts and identifies transcription factors (TFs), and in the second layer, the proposed method predicts and identifies transcription factors that prefer binding to methylated deoxyribonucleic acid (TFPMs). In addition, we also tested the proposed method on an imbalanced database. In detecting TFs and TFPMs, the proposed model consistently outperformed state-of-the-art approaches, as demonstrated by performance comparisons via empirical cross-validation analysis and independent tests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071566PMC
http://dx.doi.org/10.3390/ijms26094234DOI Listing

Publication Analysis

Top Keywords

transcription factors
16
gene expression
16
binding methylated
8
latent space
8
space representation
8
factors tfs
8
regulators gene
8
predicts identifies
8
identifies transcription
8
proposed method
8

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Warm temperature-induced autophagy mediates selective degradation of TIMING OF CAB EXPRESSION 1 thus promoting plant thermomorphogenesis.

Plant Cell

September 2025

Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.

Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.

View Article and Find Full Text PDF

RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.

View Article and Find Full Text PDF

Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF