Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many scholars have studied soup, but there are relatively few studies exploring the aroma changes during its cooking process using different detection methods. The aroma of soup was analyzed and compared using electronic nose (E-nose) analysis, headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). A significant effect of cooking time on the overall aroma profile of soup was identified through E-nose analysis. By HS-GC-IMS and HS-SPME-GC-MS analysis, 51 volatile aroma compounds were detected, with alcohols and aldehydes identified as the main aroma substances. Based on the relative odor activity value (ROAV) and multivariate statistical analysis, 1-octen-3-ol, 1-octanol, methyl cinnamate, and 2-pentyl furan were determined to be the key aroma compounds in the cooking process. We observed that shorter cooking time preserved the mushroom aroma of soup most effectively. These findings can be utilized for the industrial production of soup and for optimization of its key aroma components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071240PMC
http://dx.doi.org/10.3390/foods14091478DOI Listing

Publication Analysis

Top Keywords

cooking process
12
aroma
9
hs-gc-ims hs-spme-gc-ms
8
aroma soup
8
e-nose analysis
8
cooking time
8
aroma compounds
8
key aroma
8
soup
6
cooking
5

Similar Publications

The coffee roasting process is a critical factor in determining the final quality of the beverage, influencing its flavour, aroma, and acidity. Traditionally, roast-level classification has relied on manual inspection, which is time-consuming, subjective, and prone to inconsistencies. However, advancements in machine learning (ML) and computer vision, particularly convolutional neural networks (CNNs), have shown great promise in automating and improving the accuracy of this process.

View Article and Find Full Text PDF

Health benefits of selenium through the consumption of fresh wild macromycetes from Dali, Yunnan, China.

Food Res Int

November 2025

Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, 1 Muszyńskiego Street, 90-151 Łódź, Poland. Electronic address:

The beneficial effects of dietary selenium in countering mercury toxicity are increasingly being explored. This information would be particularly useful in Se-deficient regions, such as parts of the Yunnan, where wild fungi are a popular and sustainable food source. Selenium and mercury were analysed in multiple specimens of unprocessed and stir-fried fruiting bodies of bolete fungi.

View Article and Find Full Text PDF

Fortifying an emulsified meat product with co-encapsulated omega-3 fatty acids and lutein.

Food Res Int

November 2025

Department of Animal Science, Iowa State University, Ames, IA 50011, United States. Electronic address:

Lutein and omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer significant health benefits, especially when consumed together. However, their incorporation in food is often low due to their instability during processing and storage. Meat products play an essential role in human nutrition and are generally deficient in lutein and omega-3 fatty acids.

View Article and Find Full Text PDF

Background: Sarcopenia is associated with cardiovascular diseases (CVDs). However, whether changes in sarcopenia status affect CVD risk remains unclear. In addition, how indoor fuel use impacts the sarcopenia transition process is less well studied.

View Article and Find Full Text PDF

A preliminary study of aflatoxin contamination in a traditional Argentine food () manufactured with chickpeas ( L.) naturally and artificially contaminated.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

September 2025

Fundación de Investigaciones Científicas, "Teresa Benedicta de la Cruz", Luján, Buenos Aires, Argentina.

Global demand for chickpeas has increased due to their high plant protein content, gluten-free nature, and overall nutritional benefits. However, chickpeas are susceptible to colonisation by spp. - fungi, which are capable of producing harmful mycotoxins.

View Article and Find Full Text PDF