98%
921
2 minutes
20
Background/objectives: In the tumor microenvironment, hypoxia regulates genes that support tumor cell invasion and angiogenesis under the control of the hypoxia-inducible transcription factors (HIFs). Pleiotrophin (PTN) is a secreted protein that activates cell migration in endothelial and cancer cells that express αβ integrin but has inhibitory effects in cells that do not express αβ integrin. In both cases, the protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) seems to mediate the effects of PTN. In the present work, we studied the effect of hypoxia on PTN and PTPRZ1 expression and the functional consequences of this effect.
Methods: Western blot, quantitative real-time PCR, and luciferase assays were used to study the impact of hypoxia at the protein, mRNA, and transcriptional levels, respectively. Decoy oligonucleotides (ODNs), siRNA technology, and plasmid overexpression were used to study the involvement of the transcription factors studied. Functional assays were used to study the effect of hypoxia on cell proliferation and migration.
Results: Hypoxia increases PTN expression through the transcriptional activation of the corresponding gene in αβ integrin-expressing cells. The transcription factors HIF-1α, HIF-2α, and AP-1 mediate the up-regulation of PTN by hypoxia. Functional assays in endothelial cells from PTN knockout mice or endothelial and cancer cells following the downregulation of PTN expression showed that PTN negatively affects chemical hypoxia-induced cell proliferation and migration. In cancer cells that do not express αβ integrin, hypoxia or chemical hypoxia inhibits PTN expression in a HIF-1α-, HIF-2α-, and AP-1-independent manner. The expression of PTPRZ1 is up-regulated by chemical hypoxia, is HIF-1α- and HIF-2α-dependent, and seems to limit the activation of HIF-1α, at least in endothelial cells.
Conclusions: Hypoxia or chemical hypoxia regulates PTN and PTPRZ1 expressions to restrict the stimulatory effects of hypoxia on endothelial and cancer cell migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070880 | PMC |
http://dx.doi.org/10.3390/cancers17091516 | DOI Listing |
Sci China Life Sci
September 2025
State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora
Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.
View Article and Find Full Text PDFPflugers Arch
September 2025
Department of Science, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
Hypoxia has been extensively studied as a stressor which pushes human bodily systems to responses and adaptations. Nevertheless, a few evidence exist onto constituent trains of motor unit action potential, despite recent advancements which allow to decompose surface electromyographic signals. This study aimed to investigate motor unit properties from noninvasive approaches during maximal isometric exercise in normobaric hypoxia.
View Article and Find Full Text PDFPediatr Res
September 2025
Laboratory of Fetal Neuroprogramming, Institute of Health Sciences, University of O'Higgins, Rancagua, Chile.
Background: Fetal growth restriction (FGR) causes an adaptive redistribution of the cardiac output towards sustained cerebral vasodilation. However, the consequences of FGR and cerebral vasodilatation due to fetal hypoxia on the blood-brain barrier (BBB) are still poorly studied. This study assesses BBB permeability in the neonatal cortex of pups gestated under intrauterine hypobaric hypoxia.
View Article and Find Full Text PDFSci Rep
September 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
Am J Emerg Med
September 2025
University of South Carolina School of Medicine - Greenville, Greenville, SC, USA.
Total laryngectomy (TLE) results in the permanent separation of the respiratory and digestive tracts, requiring all airway interventions to occur exclusively via a neck stoma. Although airway obstruction in post-laryngectomy patients is uncommon, it can rapidly become fatal without prompt recognition and understanding of the altered anatomy. Here, we report the case of a patient with a recent TLE for squamous cell carcinoma, who presented to a rural Emergency Department (ED) in acute respiratory distress.
View Article and Find Full Text PDF