98%
921
2 minutes
20
Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. To date, our understanding of how small-molecule modulators interact with TMCs remains limited, hampering the discovery of novel drugs. Here, we propose a structure-based drug screening approach, integrating 3D-pharmacophore modeling, molecular dynamics simulations of the TMC1 + CIB2 + TMIE complex, and experimental validation. Our pipeline successfully identified three potential drug-binding sites within the TMC1 pore, phospholipids, and key amino acids involved in the binding of several compounds, as well as FDA-approved drugs that reduced dye uptake in cultured cochlear explants. Our pipeline offers a broad application for discovering modulators for mechanosensitive ion channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075566 | PMC |
http://dx.doi.org/10.1038/s42003-025-07943-x | DOI Listing |
Neurotoxicology
September 2025
Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:
Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.
View Article and Find Full Text PDFPLoS Biol
September 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).
View Article and Find Full Text PDFJ Eur Acad Dermatol Venereol
September 2025
Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Background: Persistent chemotherapy-induced alopecia (pCIA) is a distressing side effect of antineoplastic agents, imposing significant psychological burdens on cancer survivors. Despite its impact, there are no standardized guidelines for diagnosis, prevention or management.
Objective: To establish consensus-based definitions, diagnostic criteria, grading systems and management recommendations for pCIA.
J Assoc Res Otolaryngol
September 2025
Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON, M4N 3M5, Canada.
Purpose: Delivery of therapeutics to the inner ear is complicated by their inaccessible location and the presence of the blood-labyrinth barrier that restricts most blood-borne compounds from entering the inner ear. This study addresses the challenge of optimal delivery in treating inner ear disease, focusing on magnetic targeting gene therapy using adeno-associated virus (AAV).
Methods: The investigation explores three AAV serotypes (AAV2 Quad Mut, AAV2 pANC80L65, and AAV9 PHP.
Cell Mol Biol (Noisy-le-grand)
September 2025
Arencibia Clinic, San Sebastian, Spain.
Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.
View Article and Find Full Text PDF