98%
921
2 minutes
20
The global shift toward sustainable energy and electric mobility addresses environmental concerns related to fossil fuels. While these alternatives are increasingly utilized in residential and commercial sectors, integrating renewable energy in building systems presents significant challenges. This is particularly evident in cold regions where unpredictable resource availability complicates energy reliability. The study emphasizes the need for innovative approaches to address these complexities and ensure consistent energy performance in dynamic conditions. This research explores the energy dynamics within a residential community located in a relatively cold climate region (Tabriz). The study begins by estimating the energy requirements of individual buildings, including the additional demand generated by electric vehicles. It then evaluates the potential for solar energy generation from photovoltaic systems. Finally, a machine learning-based approach (i.e., LSTM, Long Short-Term Memory) is employed to optimize the management of energy supply and demand across the community. This study demonstrates that heating demands in a cold climate are substantially higher than cooling needs, with solar energy providing sufficient (~ 32.1%) coverage during warmer months but requiring grid support in colder seasons. The prediction of EV charging patterns using LSTM models achieved over 93% accuracy, enabling improved energy demand forecasting and load management. These findings highlight the potential for optimizing renewable energy use, reducing grid dependency, and enhancing energy efficiency through effective production-demand management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069596 | PMC |
http://dx.doi.org/10.1038/s41598-025-01519-9 | DOI Listing |
Anal Methods
September 2025
Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea.
Seamless integration of active devices into photonic integrated circuits remains a challenge due to the limited accessibility of the optical field in conventional waveguides, which tightly confine light within their cores. In this study, we propose a two-dimensional (2D) ultrathin waveguide as a photonic platform that enables efficient interaction between guided light and surface-mounted devices by supporting optical modes dominated by evanescent fields. We show that the guided light in a monolayer MoS film propagates over millimeter-scale distances with more than 99.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.
View Article and Find Full Text PDF