Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silicosis is an occupational lung disease caused by long-term inhalation of silica dust. Its characteristic pathological manifestation is progressive pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) plays an important role in the occurrence and development of silicosis fibrosis, and N6-methyladenosine (m6A), as an important form of RNA modification, is closely related to the expression and regulation of multiple genes in the process of fibrosis. In the present study, we demonstrated that m6A modification significantly increases during silica-induced EMT. Silencing Methyltransferase Like 3 (METTL3) to reduce m6A modification levels inhibited the EMT process, suggesting that METTL3-mediated m6A modification could be an effective strategy for intervening in pulmonary fibrosis. Subsequently, through RNA sequencing, protein-protein interaction network analysis, and Methylated RNA Immunoprecipitation-RT-qPCR, we identified c-Myc as a downstream target of METTL3. In summary, our findings illuminate the relationship between m6A modification, METTL3, and the progression of silicosis, particularly through the EMT process. These results suggest that targeting METTL3 could be a promising therapeutic approach for modulating m6A levels and intervening in the progression of silicosis.

Download full-text PDF

Source
http://dx.doi.org/10.1177/07482337251339926DOI Listing

Publication Analysis

Top Keywords

m6a modification
16
mettl3-mediated m6a
8
epithelial-mesenchymal transition
8
pulmonary fibrosis
8
emt process
8
progression silicosis
8
m6a
7
modification
5
insights mechanism
4
mechanism mettl3-mediated
4

Similar Publications

Advances in nanopore direct RNA sequencing and its impact on biological research.

Biotechnol Adv

September 2025

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:

Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.

View Article and Find Full Text PDF

Huopu Xialing Decoction Mitigates Influenza A-Induced Pulmonary Injury by inhibiting METTL3-Nlrp3(m6A) Mediated NLRP3 Inflammasome Activation.

J Ethnopharmacol

September 2025

School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of

Ethnopharmacological Relevance: Huopu Xialing Decoction (HXD) is a traditional Chinese medicine (TCM) formula widely used in the clinical treatment of respiratory viral infections. Despite its established application, the pharmacological mechanisms underlying its therapeutic effects against influenza remain to be fully elucidated.

Aim Of The Study: This study aimed to investigate the protective effects of HXD against influenza A virus-induced lung inflammation and to explore the role of gut microbiota and epigenetic regulation in mediating these effects.

View Article and Find Full Text PDF

X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.

View Article and Find Full Text PDF

Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.

View Article and Find Full Text PDF