98%
921
2 minutes
20
Background: Early infant phonological and non-phonological perceptual abilities are crucial for future language learning. Previous studies have focused on the changes in the cerebral cortex of infants and toddlers during speech perception, while the changes in the cerebral cortex during non-speech perception remain poorly understood.
Objective: This study aimed to investigate cortical activation patterns and differences in full-term healthy newborns under different speech and non-speech stimuli by functional near-infrared spectroscopy (fNIRS).
Methods: The cohort included 36 full-term healthy neonates (7.4 ± 6.0 days) exposed to two types of speech stimuli (native Mandarin and non-native Spanish) and three non-speech stimuli (music, cat calls, and noise) in a block design. Brain activity was monitored across eight brain regions of interest (ROIs) were monitored using fNIRS (54 channels): frontal pole area (FPA), middle frontal gyrus (MFG), primary sensorimotor cortex, middle temporal gyrus (MTG), superior temporal gyrus (STG), fusiform gyrus (FFG), Wernicke's area, and Broca's area.
Results: Mandarin stimulation activated all ROIs in newborns. Changes in oxygenated hemoglobin concentrations in FPA, MFG, STG, MTG, FFG, Wernicke's area, and Broca's area were significantly higher during Mandarin exposure compared to Spanish (p < 0.05). MTG activation was significantly greater during Mandarin exposure compared to cat calls (p = 0.005), music (p = 0.040), and noise (p < 0.001). Similarly, MFG and Broca's area showed significantly greater activation during music exposure compared to Spanish and noise stimuli (p < 0.05).
Conclusions: The newborn brain can perceive various speech and non-speech stimuli, demonstrating a preference for native language stimuli, followed by music. The ability to perceive non-native languages, animal calls, and noise appears more limited. These findings could provide some references for future research on infant and toddler language development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2025.111370 | DOI Listing |
Ann Am Thorac Soc
September 2025
Brigham and Women's Hospital, Division of Sleep and Circadian Disorders, Boston, Massachusetts, United States.
Rationale: There are insufficient data to inform the management of central sleep apnea (CSA) in patients with heart failure (HF) with reduced ejection fraction (HFrEF). Nocturnal oxygen therapy (NOT) has been postulated to benefit CSA patients with HFrEF, but has not been rigorously studied. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.
View Article and Find Full Text PDFNeurology
October 2025
Department of Radiology, Mayo Clinic, Rochester, MN.
Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.
Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).
Arq Bras Cardiol
September 2025
Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil.
Targeted temperature management (TTM) is currently the only potentially neuroprotective intervention recommended for post-cardiac arrest care. However, there are concerns among the scientific community regarding conflicting evidence supporting this recommendation. Moreover, the bulk of trials included in systematic reviews that inform guidelines and recommendations have been conducted in developed countries, with case mix and patient characteristics that significantly differ from the reality of developing countries such as Brazil.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China.
Neonatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of developmental disorders and permanent central nervous system damage, with functional recovery closely linked to myelin sheath integrity. This study aimed to analyze the expression of pH and the voltage-gated proton channel (Hv1) in the brains of neonatal pigs with HIE at various time points, alongside changes in myelin-related proteins. MRI was employed to localize the basal ganglia and assess pH changes post-hypoxia-ischemia, while immunofluorescence staining was used to evaluate Hv1, myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and myelin-associated glycoprotein (MAG).
View Article and Find Full Text PDFBrain
September 2025
Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 75013 Paris, France.
Adolescence is frequently called the second brain maturation period. In Tourette disorder (TD), the clinical trajectory of tics and associated psychiatric co-morbidities vary significantly across individuals during the transition from adolescents to adulthood. In this study, we aimed to identify patterns of resting-state functional connectivity that differentiate adolescents with TD from their neurotypical peers, and to monitor symptom-specific functional changes over time.
View Article and Find Full Text PDF