98%
921
2 minutes
20
Excessive and variable inflammation in bone defects is a key factor that impedes effective bone repair. Herein, an ultrasound-controlled composite hydrogel (LNT-SeNPs@Gel) integrating gelatin-methacryloyl and lentinan-decorated selenium nanoparticles (LNT-SeNPs) is developed, exhibiting strong antioxidant and anti-inflammatory properties to remodel the inflammatory microenvironment of bone defects. This hydrogel serves as a platform for integrating bifunctional ultrasound (ultrasound modulation, US and ultrasound for repairing, US), facilitating cascade treatment and reducing the overall treatment period. During the inflammatory phase of bone repair, US remotely modulates the LNT-SeNPs@Gel hydrogel, regulating the release of LNT-SeNPs to inhibit the overproduction of reactive oxygen species (ROS) and inflammatory factors, ultimately remodeling the inflammatory microenvironment. Subsequently, US could activate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway regulated by selenoproteins to enhance the osteogenesis of MC3T3-E1 cells, thereby accelerating the bone repair process. Consequently, the combination of bifunctional ultrasound and LNT-SeNPs@Gel significantly improves bone repair outcomes and reduces the treatment period in rats. In conclusion, this study implies that the coordinated integration of the dual effects of ultrasound is a promising strategy for handling the complex and lengthy bone defects repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c18240 | DOI Listing |
J Clin Oncol
September 2025
Carole Mercier, MD, and Charlotte Billiet, MD, PhD, Department of Radiation Oncology, Iridium Network, Wilrijk, Antwerp, Belgium, Integrated Personalised and Precision Oncology Network, University Antwerp, Antwerp, Belgium; Charlotte Billiet, MD, PhD, Department of Radiation Oncology, Iridium Networ
PLoS One
September 2025
Orthopaedics, Hebei Medical University Third Hospital, Shijiazhuang, China.
Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institute of Orthopedic Surgery, Xijing Hospital, Air force Medical University;
Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences;
Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease triggered by trauma or intense mechanical stress, leading to joint cartilage degeneration and functional impairment. Prostaglandin E2 (PGE2) contributes significantly to cartilage degradation following mechanical injury by activating its receptor, Prostaglandin E receptor 4 (EP4), on chondrocyte membranes. The homeostasis of articular cartilage primarily relies on the dynamic balance between cartilage degradation and repair, a process finely regulated by chondrocytes.
View Article and Find Full Text PDFRegen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.