Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nature uses bottom-up self-assembly to build structures with remarkable complexity and functionality. Understanding how molecular-scale interactions translate to macroscopic properties remains a major challenge and requires systems that effectively bridge these two scales. Here, we generate DNA and RNA-based liquids with exquisite programmability in their macroscopic rheological properties. In the presence of multivalent cations, nucleic acids can condense to a liquid-like state. Within these liquids, DNA and RNA retain sequence-specific hybridization abilities. We show that sequence-specific inter-molecular hybridization in the condensed phase cross-links molecules and slows down chain dynamics. This reduced chain mobility is mirrored in the macroscopic properties of the condensates. Molecular diffusivity and material viscosity scale with the inter-molecular hybridization energy, enabling precise sequence-based modulation of condensate properties over several orders of magnitude. Our work offers a robust platform to create bottom-up programmable fluids and may help advance our understanding of liquid-like compartments in cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058984PMC
http://dx.doi.org/10.1038/s41467-025-59456-0DOI Listing

Publication Analysis

Top Keywords

dna rna
8
macroscopic properties
8
inter-molecular hybridization
8
sequence-encoded intermolecular
4
intermolecular base
4
base pairing
4
pairing modulates
4
modulates fluidity
4
fluidity dna
4
rna condensates
4

Similar Publications

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF

Bacteriophages are the most abundant entities on earth and exhibit vast genetic and phenotypic diversity. Exploitation of this largely unexplored molecular space requires identification and functional characterization of genes that act at the phage-host interface. So far, this has been restricted to few model phage-host systems that are amenable to genetic manipulation.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Nuclear biomolecular condensates are essential sub-compartments within the cell nucleus and play key roles in transcription and RNA processing. Bottom-up construction of nuclear architectures in synthetic settings is non-trivial but vital for understanding the mechanisms of condensates in real cellular systems. Here, we present a facile and versatile synthetic DNA protonucleus (PN) platform that facilitates localized transcription of branched RNA motifs with kissing loops (KLs) for subsequent condensation into complex condensate architectures.

View Article and Find Full Text PDF