98%
921
2 minutes
20
Purpose: Diffusion models (DMs) excel in pixel-level and spatial tasks and are proven feature extractors for 2D image discriminative tasks when pretrained. However, their capabilities in 3D MRI discriminative tasks remain largely untapped. This study seeks to assess the effectiveness of DMs in this underexplored area.
Methods: We use 59830 T1-weighted MR images (T1WIs) from the extensive, yet unlabeled, UK Biobank dataset. Additionally, we apply 369 T1WIs from the BraTS2020 dataset specifically for brain tumor classification, and 421 T1WIs from the ADNI1 dataset for the diagnosis of Alzheimer's disease. Firstly, a high-performing denoising diffusion probabilistic model (DDPM) with a U-Net backbone is pretrained on the UK Biobank, then fine-tuned on the BraTS2020 and ADNI1 datasets. Afterward, we assess its feature representation capabilities for discriminative tasks using linear probes. Finally, we accordingly introduce a novel fusion module, named CATS, that enhances the U-Net representations, thereby improving performance on discriminative tasks.
Results: Our DDPM produces synthetic images of high quality that match the distribution of the raw datasets. Subsequent analysis reveals that DDPM features extracted from middle blocks and smaller timesteps are of high quality. Leveraging these features, the CATS module, with just 1.7M additional parameters, achieved average classification scores of 0.7704 and 0.9217 on the BraTS2020 and ADNI1 datasets, demonstrating competitive performance with that of the representations extracted from the transferred DDPM model, as well as the 33.23M parameters ResNet18 trained from scratch.
Conclusion: We have found that pretraining a DM on a large-scale dataset and then fine-tuning it on limited data from discriminative datasets is a viable approach for MRI data. With these well-performing DMs, we show that they excel not just in generation tasks but also as feature extractors when combined with our proposed CATS module.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2463/mrms.mp.2024-0206 | DOI Listing |
Neural Netw
September 2025
College of Information Science, North China University of Technology, Beijing, China. Electronic address:
Personalized Federated Learning (pFL) has received extensive attentions, due to its ability to effectively process non-IID data distributed among different clients. However, most of the existing pFL methods focus on the collaboration between global and local models to enrich the personalization process, but ignoring a lot of valuable historical information, which represents the unique learning trajectory of each client. In this paper, we propose a pFL method called FedLFH, which introduces a tracking variable that allows each client to preserve historical information to facilitate personalization.
View Article and Find Full Text PDFJ Food Sci
September 2025
Faculty of Computing, Federal University of Uberlandia, Uberlândia, Brazil.
The coffee roasting process is a critical factor in determining the final quality of the beverage, influencing its flavour, aroma, and acidity. Traditionally, roast-level classification has relied on manual inspection, which is time-consuming, subjective, and prone to inconsistencies. However, advancements in machine learning (ML) and computer vision, particularly convolutional neural networks (CNNs), have shown great promise in automating and improving the accuracy of this process.
View Article and Find Full Text PDFNeural Netw
September 2025
School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.
View Article and Find Full Text PDFJ Xray Sci Technol
September 2025
Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China.
Parkinson's disease (PD) is a challenging neurodegenerative condition often prone to diagnostic errors, where early and accurate diagnosis is critical for effective clinical management. However, existing diagnostic methods often fail to fully exploit multimodal data or systematically incorporate expert domain knowledge. To address these limitations, we propose MKD-Net, a multimodal and knowledge-driven diagnostic framework that integrates imaging and non-imaging clinical data with structured expert insights to enhance diagnostic performance.
View Article and Find Full Text PDFZookeys
August 2025
Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland Adam Mickiewicz University in Poznan Poznań Poland.
The Greek island of Corfu (Kérkyra) is considered the type locality of two species described in 1834 by Rossmässler, namely and . In this work, Corfu populations of these species were investigated by an integrative approach including analysis of morphological features of shell and distal genitalia as well as molecular features of selected mitochondrial and nuclear gene fragments to establish the relationships between Corfu and as well as between Corfu and Italian . Shell features did not differentiate the pairs analysed, i.
View Article and Find Full Text PDF