98%
921
2 minutes
20
Small-diameter vascular grafts (SDVGs) often struggle to maintain long-term patency due to thrombus formation, intimal hyperplasia, and inflammation. Endothelialization emerges as a pivotal strategy for addressing these concerns. As a representative activator of the hypoxia-inducible factor (HIF) pathway, ML228 can stimulate the expression of downstream target genes like vascular endothelial growth factor (VEGF) to induce angiogenesis, yet it requires encapsulation by nanoparticles for optimal delivery and efficacy. However, the immune system often recognizes nanoparticles as foreign entities, posing a significant risk of clearance. In this study, we developed ML228-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles and coated them with platelet membranes, thereby enhancing their biocompatibility and enabling immune escape. The ML228-loaded PLGA nanoparticles coated with platelet membranes (MPNP) were immobilized onto electrospinning SDVGs made of silk fibroin (SF) and polycaprolactone (PCL) to obtain MPNP-coated grafts (SF/PCL@MPNP) with the ability to promote endothelialization. In vitro biological activity studies demonstrated that SF/PCL@MPNP activated the HIF pathway, upregulating the downstream target gene VEGF, which facilitated endothelial cells migration and angiogenesis. In vivo implantation in a rat abdominal aorta model revealed that SF/PCL@MPNP promoted endothelialization, supported the regeneration of contractile smooth muscle cells, and modulated inflammatory responses. Overall, this study presents a strategy for constructing SDVGs using ML228-loaded nanoparticles with platelet membrane coating, highlighting the promises of using ML228 to activate the HIF pathway and membrane-coated nanoparticles to improve endothelialization in vascular graft applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2025.114756 | DOI Listing |
Funct Integr Genomics
September 2025
The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China.
Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.
View Article and Find Full Text PDFEnviron Int
September 2025
State Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sciences, Northeastern University, Shenyang 110004, China; School of Environment, Hangzhou Institute for Advanced Study, Univ
Exposure to nanoplastics (NPs), a pervasive environmental pollutant, presents potential health risks. Pulmonary exposure to NPs has been shown to disrupt both pulmonary metabolic status and immune homeostasis, leading to concerns about their impact on respiratory health and systemic well-being. However, the underlying linkage and mechanisms remain elusive.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Nephrology, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, Jilin, China.
Brain Behav
September 2025
Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China.
Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.
Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro.
Zhonghua Yan Ke Za Zhi
September 2025
Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
To explore the role and mechanism of the hypoxia-inducible factor-1 (HIF-1) pathway in rat retinal precursor R28 cell injury caused by the (E50K) mutation. This experimental study was conducted from November 2023 to October 2024. The retinas of 18-month-old wild-type (WT) mice and normal tension glaucoma mice with the (E50K) mutation were extracted for proteomic analysis.
View Article and Find Full Text PDF