98%
921
2 minutes
20
U2AF65, a 65 kDa splicing co-factor, promotes spliceosome assembly. Although its role in alternative splicing (AS) is known, the function of U2AF65B (the large subunit of U2AF65) remains unclear. Therefore, we systematically identified and analyzed the U2AF65B gene family across 36 plant species, revealing 103 putative members with conserved structures and functions. Phylogenetic analysis divided the genes into two clades and five subgroups, indicating evolutionary divergence. Gene structure and conserved motif analyses showed that most genes have complex structures and shared similar motifs. Homology modeling and amino acid conservation analyses revealed significant conservation in U2AF65B amino acid sequences, particularly in Groups D and E. -acting element analysis indicated that genes respond to various stimuli, supported by expression analysis under different stress conditions. Subcellular localization predictions indicated that U2AF65B proteins primarily localize in the nucleus and the cytoplasm. Alternative splicing (AS) profile analysis showed that the AS frequency likely varies between species. Functional analysis of the mutant in revealed that AtU2AF65B function loss enhances root elongation and attenuates ABA-dependent germination suppression, indicating negatively regulated seedling growth and development. These findings provide insights into the evolutionary history, molecular mechanisms, and functional roles of the U2AF65B gene family in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027700 | PMC |
http://dx.doi.org/10.3390/ijms26083901 | DOI Listing |
Genome Res
September 2025
College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China;
Poultry egg production is shaped by the intertwined action of multiple physiological systems, greatly magnifying the complexity of its underlying genetic regulation. Although multitissue mapping of regulatory variants offers a powerful route to untangle this complexity, comprehensive data sets in ducks remain scarce. Meanwhile, the contributions of peripheral systems beyond neuroendocrine regulation on poultry egg production are still largely unexplored.
View Article and Find Full Text PDFJ Neurosci
September 2025
College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
Nonsense-mediated mRNA decay (NMD) is a conserved RNA surveillance mechanism that degrades transcripts with premature termination codons (PTCs) and finetunes gene expression by targeting RNA transcripts with other NMD inducing features. This study demonstrates that conditional knockout of , a key NMD component, in oligodendrocyte lineage cells disrupts the degradation of PTC-containing transcripts, including aberrant variants of the RNA-binding protein The loss of SMG5 in both sexes of mice impaired oligodendrocyte differentiation, reduced myelin gene expression, and led to thinner myelin sheaths and compromised motor function in mice. Mechanistically, HNRNPL was shown to regulate the alternative splicing of myelin-associated genes and , and promote oligodendrocyte differentiation.
View Article and Find Full Text PDFGenomics
September 2025
Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego str. 12/14, 61-704 Poznań, Poland. Electronic address:
Despite advancements in genome annotation tools, challenges persist for non-classical model organisms with limited genomic resources, such as Schmidtea mediterranea. To address these challenges, we developed a flexible and scalable genome annotation pipeline that integrates short-read (Illumina) and long-read (PacBio) sequencing technologies. The pipeline combines reference-based and de novo assembly methods, effectively handling genomic variability and alternative splicing events.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:
Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.
View Article and Find Full Text PDFEMBO J
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.
View Article and Find Full Text PDF