High-Strength Conductive Hydrogel Fiber Prepared Via Microfluidic Technology for Functionalized Strain Sensing.

Macromol Rapid Commun

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid advancement of wearable flexible electronics has heightened the demand for hydrogel materials that combine mechanical robustness with electrical conductivity. Herein, the TEMPO-oxidized cellulose nanofibers-Graphene nanosheets/poly(vinyl alcohol)-sodium alginate-tannic acid (TOCN-GN/PVA-SA-TA, TGG) composite hydrogel fibers are prepared by microfluidic spinning technology to solve the bottleneck problems of poor dispersion of GN and imbalance of mechanical-conductive properties of traditional hydrogels. TOCN, acting as a biotemplate, effectively inhibits GN agglomeration via hydrogen bonding and mechanical interlocking, thereby enhancing GN dispersion and facilitating the formation of 3D conductive networks within hydrogel fibers. The optimized TGG fibers achieved a tensile strength of 0.96 MPa, 150% elongation at break, and electrical conductivity of 2.66 S m, while exhibiting enhanced energy dissipation and fatigue resistance. As strain sensors, TGG fibers demonstrated high sensitivity (gauge factor is 1.81 at 40-100% strain) and rapid response (≈0.3 s), enabling precise monitoring of joint movements, facial micro-expressions, and swallowing actions. Furthermore, PDMS-encapsulated textile sensors enabled encrypted Morse code transmission, demonstrating innovative potential for next-generation flexible electronics in health monitoring and human-machine interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202500222DOI Listing

Publication Analysis

Top Keywords

prepared microfluidic
8
flexible electronics
8
electrical conductivity
8
hydrogel fibers
8
tgg fibers
8
high-strength conductive
4
hydrogel
4
conductive hydrogel
4
hydrogel fiber
4
fiber prepared
4

Similar Publications

Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.

View Article and Find Full Text PDF

Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.

Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.

View Article and Find Full Text PDF

Preparation Methods of Hydrogel Microspheres and Recent Advances in Their Application for Treating Diabetic Wounds.

Int J Nanomedicine

September 2025

Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.

Diabetic wounds are characterized by complex pathologies, such as vascular changes, nerve damage, and immune dysfunction, which make healing difficult. Hydrogel microspheres have shown great potential in the field of wound treatment due to their excellent biocompatibility, high water content, and soft physical properties. The review summarizes the preparation methods of hydrogel microspheres in detail, including microfluidic technology, spray method, electro spraying, emulsion method, phase separation, photomask method, and 3D printing technology.

View Article and Find Full Text PDF

SEE-phAST: Spatially encapsulated emulsions for phenotypic antibiotic susceptibility testing via sequential digital RAA-CRISPR.

Biosens Bioelectron

August 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 1

The escalating threat of antimicrobial resistance is exacerbated by delayed diagnostics and improper antibiotics use, underscoring an urgent demand for rapid, versatile AST tools to support evidence-based prescribing. In this study, we present an innovative, generalizable phenotypic AST approach by quantifying bacterial gDNA copy number variations (CNVs) following 0.5-h-brief culturing with antibiotic exposure, termed spatially encapsulated emulsions (SEE)-phAST.

View Article and Find Full Text PDF

Research on liposome-composite hydrogel microspheres (LHMs) drug delivery systems, primarily composed of drugs, liposomes, and hydrogels, has garnered growing scientific interest. LHMs exhibit biosafety, modifiability, a wide range of loaded drug categories (water-soluble or fat-soluble), controlled and sustainable drug release capability, and specific cell-targeted performance, which compensate for the shortcomings of conventional drug delivery methods due to the complementary advantages of liposome and hydrogel microspheres. In this review, we systematically analyze the existing literature on LHMs and provide a comprehensive overview of their preparation methods.

View Article and Find Full Text PDF