98%
921
2 minutes
20
Various flexible surface-enhanced Raman scattering (SERS) substrates have been developed for the Raman detection of environmental pollutants due to their high sensitivity, low cost, and rapid sampling capabilities. However, achieving high reproducibility, reliability, and sensitivity in large areas remains challenging. In this study, we present a simple fabrication method for a layered, sandwich-nanoarchitectured SERS substrate consisting of multiscale nanomaterials of (1) 0D, Au nanoparticles (AuNPs), (2) 1D, TEMPO-oxidized nanocellulose fibers (TC), and (3) 2D, MXene (TiCT). The resulting MXene@AuNP@MXene@TC (MX@Au@MX@TC) film demonstrated enhanced SERS performance based on the synergistic effect of efficient charge transfer (CT) and the presence of numerous nanogaps. Vertical plasmonic coupling in the MX@Au@MX@TC film, combined with the uniform adsorption of the target molecules, led to an ultra-low limit of detection of 10 M and an enhancement factor of 9.9 × 10 for rhodamine 6 G (R6G). In addition, the substrate exhibited excellent reliability, providing uniform and stable signals across various spatial scales with a relative standard deviation of 2.29 %. Furthermore, the SERS substrate detected thiram (0.02 μg/cm²) via direct in-situ sampling on curved fruit surfaces, offering insights into the scalable, cost-effective production of flexible SERS substrates for practical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.138450 | DOI Listing |
Langmuir
September 2025
Federal University of São Paulo, Laboratory of Hybrid Materials, Diadema, São Paulo 09913-030, Brazil.
This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.
View Article and Find Full Text PDFAnal Sci
September 2025
Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.
View Article and Find Full Text PDFNanoscale Adv
September 2025
State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing 100193 China
Mycotoxins in feed can pose significant risks to the health of livestock and poultry, leading to reduced economic returns and impaired production efficiency, thereby impeding the sustainable development of the livestock industry. Consequently, the exploration of highly sensitive, simple and rapid detection methods for trace mycotoxins in feed is crucial for ensuring feed safety and promoting industrial sustainability. Surface-enhanced Raman spectroscopy (SERS), a rapid detection method characterized by high sensitivity, ease of operation, and resistance to water interference, has gained substantial traction in mycotoxin detection within feed matrices in recent years.
View Article and Find Full Text PDFACS Omega
September 2025
Mads Clausen Institute, NanoSYD, University of Southern Denmark (SDU), Alsion 2, 6400 Sønderborg, Denmark.
Detection of micro- and nanoplastic particles at extremely low concentrations in complex matrices is a critical goal in environmental science and regulatory frameworks. Surface-enhanced Raman spectroscopy (SERS) offers unique advantages for detecting molecular species in such mixtures, relying solely on their characteristic fingerprints. However, its application for plastic particles has been constrained due to weak analyte-substrate interactions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.
View Article and Find Full Text PDF