98%
921
2 minutes
20
The Food and Drug Administration recently approved a fixed dose combination of aspirin and omeprazole that has been introduced for the treatment of gastrointestinal disorders, as it reduces the risk of upper gastrointestinal and cardiovascular adverse events in aspirin-treated patients. Therefore, an optimized eco-friendly, simple, fast, and precise quantitative nuclear magnetic resonance spectroscopy technique was presented for the concurrent estimation of that mixture in their single and combined dosage forms. The quantitative nuclear magnetic resonance spectroscopy concurrent estimation of both drugs was achieved using phloroglucinol as the internal standard and dimethyl sulfoxide as a deuterated solvent. An ideal set of acquisition parameters was determined to be 128 scans, 10 s relaxation latency, and 90° pulse angle. The selected quantitative signal of aspirin was the doublet of doublet signal appeared at 7.945 ppm, while that of omeprazole was the singlet signal at 8.18 ppm. The singlet signal at 5.69 ppm was selected for the internal standard. The spectra were subjected to integration, baseline correction, and auto phase correction. The developed quantitative proton nuclear magnetic resonance spectroscopy method was found to be rectilinear over the range of 0.05-4.0 mg mL for both drugs. The detecting and quantifying limits for both drugs were approximately 0.01 and 0.03 mg mL, respectively. Neither labelling nor pretreatment steps were needed to assay the studied drugs using our developed quantitative nuclear magnetic resonance spectroscopy method. The proposed nuclear magnetic resonance spectroscopy approach was effectively evaluated in terms of linearity (r = 0.9999), accuracy, and precision (%RSD < 1.08). Furthermore, the suggested technique was investigated to analyze the studied drugs in their single and combined dosages. This work enables clinicians to simultaneously monitor aspirin and omeprazole levels in both single and fixed-dose combination tablets, ensuring precise dosing and effective treatment management. For patients, it supports safer therapy by reducing the risks associated with improper dosing or drug interactions in combination therapies. After evaluating the method's greenness, whiteness and blueness, it was determined that the suggested approach was environmentally friendly. The suggested approach was compared with the previously reported methods from both an analytical and eco-friendly perspective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053856 | PMC |
http://dx.doi.org/10.1186/s13065-025-01477-3 | DOI Listing |
Int J Biol Macromol
September 2025
School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, PR China. Electronic address:
Hirudo nipponica Whitman has been utilized in traditional medicine for centuries for its bioactive components. In this study, a novel polysaccharide, which was called SZ, was isolated from H. nipponica Whitman through enzymatic hydrolysis, alkaline extraction, and chromatographic purification.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:
Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.
View Article and Find Full Text PDFFood Chem
September 2025
College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China. Electronic address:
The objective of this study was to investigate the enhancement mechanism of low-frequency magnetic field (LF-MF) on the gelation and structures of potato protein-linseed oil emulsion gel. Results indicated that the gel strength and water holding capacity of the gel induced by 6 mT LF-MF intensity were significantly increased from 0.33 N‧mm and 42.
View Article and Find Full Text PDFTalanta
September 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Oslo, Norway; Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0315, Oslo, Norway. Electronic address:
Dried blood spots (DBS) offer a practical and relatively non-invasive method for sample collection. Here, we evaluate the feasibility of applying H NMR spectroscopy to metabolomic analysis of DBS. Various solvent suppression techniques and extraction protocols were tested using aqueous and methanolic solvents.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France.
Plastics are widely used materials composed of polymers and various additives to achieve specific properties. Their composition is often highly complex, particularly in post-consumer plastic waste. As mechanical recycling faces increasing limitations, chemistry-driven strategies are attracting growing interest to improve plastic recovery.
View Article and Find Full Text PDF