Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiovascular diseases (CVDs) represent a profound challenge with inflammation playing a significant role in their pathophysiology. Extracellular vesicles (EVs), which are membranous structures encapsulated by a lipid bilayer, are essential for intercellular communication by facilitating the transport of specific bioactive molecules, including microRNAs, proteins, and lipids. Emerging evidence suggests that the regulatory mechanisms governing cardiac resident cells are influenced by EVs, which function as messengers in intercellular communication and thereby contribute to the advancement of CVDs. In this review, we discuss the multifaceted biological functions of EVs and their involvement in the pathogenesis of various CVDs, encompassing myocardial infarction, ischemia-reperfusion injury, heart failure, atherosclerosis, myocarditis, cardiomyopathy, and aneurysm. Furthermore, we summarize the recent advancements in utilizing EVs as non-invasive biomarkers and in cell-free therapy based on EVs for the diagnosis and treatment of CVDs. Future research should investigate effective techniques for the isolation and purification of EVs from body fluids, while also exploring the pathways for the clinical translation of therapy based on EVs. Additionally, it is imperative to identify appropriate EV-miRNA profiles or combinations present in the circulation of patients, which could serve as biomarkers to improve the diagnostic accuracy of CVDs. By synthesizing and integrating recent research findings, this review aims to provide innovative perspectives for the pathogenesis of CVDs and potential therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051314PMC
http://dx.doi.org/10.1186/s10020-025-01200-xDOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
cardiovascular diseases
8
biomarkers cell-free
8
intercellular communication
8
pathogenesis cvds
8
therapy based
8
based evs
8
evs
7
cvds
6
advances roles
4

Similar Publications

Migrasomes in Health and Disease: Insights into Mechanisms, Pathogenesis, and Therapeutic Opportunities.

Cell Physiol Biochem

September 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland, E-Mail:

Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins.

View Article and Find Full Text PDF

Proteomics Uncovers Enrichment Bias of Common Extracellular Vesicle Isolation Methods in HEK293T Cells.

J Proteome Res

September 2025

School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330031, China.

Extracellular vesicles (EVs) are membranous structures consisting of lipid bilayers that are released by most cell types and serve as important mediators of intercellular communication. The HEK293T cell line model has gained considerable attention from the scientific community, particularly in the fields of engineering and drug delivery. Nevertheless, there is a dearth of systematic comparisons of the most prevalent EV isolation methodologies for HEK293T in terms of recovery and specificity.

View Article and Find Full Text PDF

Objectives: To investigate the effect of cardiomyocytes-derived exosomes on lipopolysaccharide (LPS)-induced cardiomyocyte injury and its mechanism.

Methods: Exosomes isolated from rat cardiomyocytes with or without LPS treatment were co-cultured with rat lymphocytes. The lymphocytes with or without exosome treatment were co-cultured with LPS-induced rat cardiomyocytes for 48 h.

View Article and Find Full Text PDF

Schistosome parasites are known to modulate host immune responses, which is achieved in part through the release of excretory/secretory (ES) products, including extracellular vesicles (EVs). During chronic schistosomiasis, increased regulatory responses are found, which include enhanced IL-10 production by B (Breg) cells. ES products from schistosome eggs are able to induce IL-10 production by B cells.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF