Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Functionalization of carboranes, icosahedral boron-carbon molecular clusters, is of great interest as they have wide applications in medicinal and materials chemistry. Thus, site- and enantioselective synthesis of carboranes requires complete control of the reaction. Herein, we describe the asymmetric Rh(II)-catalyzed insertion reactions of carbenes into cage B-H bond of carboranes. This reaction thereby generates carboranes possessing a carbon-stereocenter adjacent to cage boron of the carborane, in excellent site- and enantioselectivity under mild reaction conditions. The fully computed transition structures of Rh(II)-catalyzed carbene insertion process through density functional theory are reported. These B-H insertion transition structures, in conjunction with topographical proximity surfaces analyses, visually reveal the region between the carborane and the phthalimide ligands responsible for the selectivities of this reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053766PMC
http://dx.doi.org/10.1038/s41467-025-59410-0DOI Listing

Publication Analysis

Top Keywords

site- enantioselective
8
functionalization carboranes
8
transition structures
8
carboranes
5
enantioselective b-h
4
b-h functionalization
4
carboranes functionalization
4
carboranes icosahedral
4
icosahedral boron-carbon
4
boron-carbon molecular
4

Similar Publications

ConspectusFunctionalization of carbon-hydrogen (C-H) bonds has emerged as a powerful strategy in modern organic synthesis, offering efficient routes to build molecular complexity from simple and abundant substrates. Among various transition-metal catalysts, palladium(II) complexes have proven particularly versatile for C-H activation, owing to the diverse reactivity of carbon-palladium bonds. To advance this approach, the discovery of ligands that can accelerate C-H activation as well as subsequent steps in the catalytic cycle is the pivotal driving force.

View Article and Find Full Text PDF

Recent Advances in Bioinspired Cu-Directed C-H Hydroxylation Reactions.

Acc Chem Res

August 2025

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

ConspectusCu-dependent metalloenzymes catalyze a wide array of oxidative transformations using O as an oxidant under mild conditions. These include the hydroxylation of challenging organic substrates (e.g.

View Article and Find Full Text PDF

Isobutylene (IB) is produced on a large scale by the petrochemical industry and is metabolized by the aerobic alkene-metabolizing bacterium sp. ELW1. The initial metabolite of IB catabolism by this bacterium is proposed to be 2-methyl-1,2-epoxypropane (isobutylene oxide [IBO]).

View Article and Find Full Text PDF

Divergent Synthesis of and Structurally Related Monoterpenoid Indole Alkaloids: A Non-biomimetic Strategy.

Acc Chem Res

September 2025

Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China.

ConspectusMonoterpenoid indole alkaloids constitute one of the largest natural product families, with over 3000 members reported to date. , a genus of about 30 species, is notable for its rich alkaloid diversity. These plants produce unique monoterpenoid indole alkaloids with intriguing structures and bioactive properties, making them a key focus in synthetic chemistry research over the years.

View Article and Find Full Text PDF

Copper-catalyzed radical C(sp)‒N coupling has become a major focus in synthetic catalysis over the past decade. However, achieving this reaction manifold by using enzymes has remained elusive. In this study, we introduce a photobiocatalytic approach for radical benzylic C(sp)‒N coupling using a copper-substituted nonheme enzyme.

View Article and Find Full Text PDF