Systematic and comprehensive analysis of major localizations of alpha-dystroglycan-specific modifying enzymes.

Glycobiology

Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dystroglycan (DG) binds to extracellular matrix via its O-glycans, which are sequentially modified in a specific order by DG-specific enzymes: POMGNT2, B3GalNT2, and POMK in the endoplasmic reticulum (ER), followed by FKTN, FKRP, TMEM5, B4GAT1 and LARGE1 in the Golgi apparatus. However, there have been no comprehensive and systematic studies on the major localization of these enzymes. Here, we expressed fluorescent fusion proteins of DG-specific modifying enzymes under the control of short CMV promoter and observed their primary localization using the latest microscopy along with localization markers: mEGFP-KDEL for the ER, GM130 and GRASP55 for the cis-/medial-Golgi, and TGN46 and GCC1 for the trans-Golgi network. As a result, POMGNT2 and B3GalNT2 were localized to the ER as expected, but POMK was localized predominantly to the cis-/medial-Golgi showing co-localization with GRASP55. FKTN, FKRP and TMEM5 were partially co-localized with both cis-/medial- and trans-Golgi network markers. Though B4GAT1 did not co-localize with GM130 or TGN46, it co-localized with GCC1 another trans-Golgi network marker, indicating Golgi subcompartmentalization. LARGE1, the final glycosyltransferase involved in the modification of DG's O-glycan, was localized in the cis-/medial-Golgi, but did not overlap with trans-Golgi network markers. An EndoH sensitivity assay demonstrated that DG-specific enzymes interacting with DG were localized in the early secretory pathway. Our results reveal that POMK and B4GAT1 function at locations distinct from their major localization and support the conclusion that the modification of matriglycan on DG is completed at the cis-/medial-Golgi.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwaf027DOI Listing

Publication Analysis

Top Keywords

trans-golgi network
16
modifying enzymes
8
dg-specific enzymes
8
pomgnt2 b3galnt2
8
fktn fkrp
8
fkrp tmem5
8
major localization
8
gcc1 trans-golgi
8
localized cis-/medial-golgi
8
network markers
8

Similar Publications

Cholesterol-dependent cytolysins (CDCs) constitute the largest group of pore-forming toxins and serve as critical virulence factors for diverse pathogenic bacteria. Several CDCs are known to activate the NLRP3 inflammasome, although the mechanisms are unclear. Here we discovered that multiple CDCs, which we referred to as type A CDCs, were internalized and translocated to the trans-Golgi network (TGN) to remodel it into a platform for NLRP3 activation through a unique peeling membrane mechanism.

View Article and Find Full Text PDF

Cargoes move from cis to trans-Golgi compartments and concentrate in the TGN before exiting.

EMBO Rep

September 2025

Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore"-Second Unit (IEOMI-SU), National Research Council of Italy (CNR), Via P. Castellino 111, Napoli, Italy.

The classical models of intra-Golgi transport envision a movement of cargoes from cis- to trans-Golgi, followed by their sorting at the trans-Golgi network (TGN). During this vectorial transport, the cargoes are processed by sequentially acting glycosylation enzymes. A number of studies challenged the vectorial transport model and proposed alternative transport routes bypassing either directional transport or the TGN.

View Article and Find Full Text PDF

LDL transcytosis passes through the trans-Golgi network and requires Rab10.

J Lipid Res

September 2025

Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Department of Medicine and the Interdepartmental Division of Critical Care Med

Atherosclerosis begins with the subendothelial retention of low-density lipoproteins (LDL) from the circulation. While LDL transcytosis across the endothelium is mediated by SR-BI and ALK1 and is usually independent of LDLR, the intracellular mechanisms and route of LDL transcytosis remain unclear. Using total internal reflection fluorescence microscopy in LDLR-depleted human coronary artery endothelial cells (HCAECs), we found that LDL transcytosis can proceed both directly as well as indirectly from an intracellular compartment.

View Article and Find Full Text PDF

UDP-Gal-β-1,4 galactosyltransferase-V (GalT-V) is a member of a large family of galactosyltransferases whose function is to transfer galactose from the nucleotide sugar UDP-galactose to a glycosphingolipid glucosylceramide, to generate lactosylceramide (LacCer). It also causes the N and O glycosylation of proteins in the Trans Golgi area. LacCer is a bioactive lipid second messenger that activates an "oxidative stress pathway", leading to critical phenotypes, e.

View Article and Find Full Text PDF