Publications by authors named "Ilenia Agliarulo"

The classical models of intra-Golgi transport envision a movement of cargoes from cis- to trans-Golgi, followed by their sorting at the trans-Golgi network (TGN). During this vectorial transport, the cargoes are processed by sequentially acting glycosylation enzymes. A number of studies challenged the vectorial transport model and proposed alternative transport routes bypassing either directional transport or the TGN.

View Article and Find Full Text PDF

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation.

View Article and Find Full Text PDF

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation.

View Article and Find Full Text PDF
Article Synopsis
  • TRAP1 is a molecular chaperone that plays a dual role in cancer, acting as both an oncogene and an oncosuppressor depending on the type of cancer and its metabolism.
  • TRAP1 interacts with mitochondrial complex III, affecting respiration and allowing cancer cells to sustain energy production when glucose is low.
  • The study highlights TRAP1's potential as a therapeutic target in ovarian cancer, especially since its levels correlate with patient survival and response to treatment.
View Article and Find Full Text PDF

Golgi apparatus is the central component of the mammalian secretory pathway and it regulates the biosynthesis of the plasma membrane through three distinct but interacting processes: (a) processing of protein and lipid cargoes; (b) creation of a sharp transition in membrane lipid composition by non-vesicular transport of lipids; and (c) vesicular sorting of proteins and lipids at the trans-Golgi network to target them to appropriate compartments. We discuss the molecules involved in these processes and their importance in physiology and development. We also discuss how mutations in these molecules affect plasma membrane composition and signaling leading to genetic diseases and cancer.

View Article and Find Full Text PDF

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear.

View Article and Find Full Text PDF

Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.

View Article and Find Full Text PDF

Syndesmos (SDOS) is a functionally poorly characterized protein that directly interacts with p53 binding protein 1 (53BP1) and regulates its recruitment to chromatin. We show here that SDOS interacts with another important cancer-linked protein, the chaperone TRAP1, associates with actively translating polyribosomes and represses translation. Moreover, we demonstrate that SDOS directly binds RNA in living cells.

View Article and Find Full Text PDF

Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1) is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells.

View Article and Find Full Text PDF

Metabolic reprogramming is one of the most frequent stress-adaptive response of cancer cells to survive environmental changes and meet increasing nutrient requirements during their growth. These modifications involve cellular bioenergetics and cross talk with surrounding microenvironment, in a dynamic network that connect different molecular processes, such as energy production, inflammatory response, and drug resistance. Even though the Warburg effect has long been considered the main metabolic feature of cancer cells, recent reports identify mitochondrial oxidative metabolism as a driving force for tumor growth in an increasing number of cellular contexts.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second leading cause of gynecological cancer death worldwide. Although the list of biomarkers is still growing, molecular mechanisms involved in OC development and progression remain elusive. We recently demonstrated that lower expression of the molecular chaperone TRAP1 in OC patients correlates with higher tumor grade and stage, and platinum resistance.

View Article and Find Full Text PDF

Cell motility is a highly dynamic phenomenon that is essential to physiological processes such as morphogenesis, wound healing and immune response, but also involved in pathological conditions such as metastatic dissemination of cancers. The involvement of the molecular chaperone TRAP1 in the regulation of cell motility, although still controversial, has been recently investigated along with some well-characterized roles in cancer cell survival and drug resistance in several tumour types. Among different functions, TRAP1-dependent regulation of protein synthesis seems to be involved in the migratory behaviour of cancer cells and, interestingly, the expression of p70S6K, a kinase responsible for translation initiation, playing a role in cell motility, is regulated by TRAP1.

View Article and Find Full Text PDF

TNF receptor-associated protein 1 (TRAP1) is an HSP90 chaperone involved in stress protection and apoptosis in mitochondrial and extramitochondrial compartments. Remarkably, aberrant deregulation of TRAP1 function has been observed in several cancer types with potential new opportunities for therapeutic intervention in humans. Although previous studies by our group identified novel roles of TRAP1 in quality control of mitochondria-destined proteins through the attenuation of protein synthesis, molecular mechanisms are still largely unknown.

View Article and Find Full Text PDF