Publications by authors named "Danilo S Matassa"

Heat shock proteins have been increasingly identified in RNA-interactomes, suggesting potential roles beyond their canonical functions. Among those, the cancer-linked chaperone TRAP1 has been mainly characterized for its regulatory role on respiratory complex activity and protein synthesis, while its specific function as an RNA-binding protein (RBP) remains unclear. In this study, we confirmed the RNA-binding activity of TRAP1 in living cells using both protein- and RNA-centric approaches and demonstrated that multiple TRAP1 regions cooperate in such binding.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention.

View Article and Find Full Text PDF

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation.

View Article and Find Full Text PDF

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation.

View Article and Find Full Text PDF
Article Synopsis
  • TRAP1 is a molecular chaperone that plays a dual role in cancer, acting as both an oncogene and an oncosuppressor depending on the type of cancer and its metabolism.
  • TRAP1 interacts with mitochondrial complex III, affecting respiration and allowing cancer cells to sustain energy production when glucose is low.
  • The study highlights TRAP1's potential as a therapeutic target in ovarian cancer, especially since its levels correlate with patient survival and response to treatment.
View Article and Find Full Text PDF
Article Synopsis
  • High-grade serous ovarian cancer (HGSOC) is aggressive and often becomes resistant to platinum-based chemotherapy, initially effective for treatment.
  • Recent findings indicate that this resistance is linked to changes in metabolism, specifically a decrease in reduced glutathione (GSH) levels and altered enzyme activity related to its synthesis.
  • The study suggests that targeting the pathways related to GSH could provide new therapeutic strategies for improving treatment outcomes in HGSOC patients, particularly those who do not respond to conventional chemotherapy.
View Article and Find Full Text PDF

Metabolic rewiring fuels rapid cancer cell proliferation by promoting adjustments in energetic resources, and increasing glucose uptake and its conversion into lactate, even in the presence of oxygen. Furthermore, solid tumors often contain hypoxic areas and can rapidly adapt to low oxygen conditions by activating hypoxia inducible factor (HIF)‑1α and several downstream pathways, thus sustaining cell survival and metabolic reprogramming. Since TNF receptor‑associated protein 1 (TRAP1) is a HSP90 molecular chaperone upregulated in several human malignancies and is involved in cancer cell adaptation to unfavorable environments and metabolic reprogramming, in the present study, its role was investigated in the adaptive response to hypoxia in human colorectal cancer (CRC) cells and organoids.

View Article and Find Full Text PDF

Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation.

View Article and Find Full Text PDF

Metabolic rewiring is a mechanism of adaptation to unfavorable environmental conditions and tumor progression. TRAP1 is an HSP90 molecular chaperone upregulated in human colorectal carcinomas (CRCs) and responsible for downregulation of oxidative phosphorylation (OXPHOS) and adaptation to metabolic stress. The mechanism by which TRAP1 regulates glycolytic metabolism and the relevance of this regulation in resistance to EGFR inhibitors were investigated in patient-derived CRC spheres, human CRC cells, samples, and patients.

View Article and Find Full Text PDF

Interleukin (IL)-6 has been detected in serum and ascites from patients affected by epithelial ovarian cancers, and also in some human ovarian cancer cell lines. To investigate the role of IL-6 in ovarian lesions, we first measured its levels in serum samples of 24 healthy donors and in 17 and 9 patients affected by ovarian carcinomas and ovarian benign cysts respectively. IL-6 levels were significantly higher than healthy donors in serum samples from ovarian cancer patients, but not in benign ovarian cysts.

View Article and Find Full Text PDF

Despite initial chemotherapy response, ovarian cancer is the deadliest gynecologic cancer, due to frequent relapse and onset of drug resistance. To date, there is no affordable diagnostic/prognostic biomarker for early detection of the disease. However, it has been recently shown that high grade serous ovarian cancers show peculiar oxidative metabolism, which is in turn responsible for inflammatory response and drug resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic reprogramming in cancer cells helps them adapt to stress conditions like low oxygen and nutrient scarcity, making it a key aspect of tumor biology.
  • Unlike traditional views centered on the Warburg effect, these adaptations require active mitochondria and precise regulation to function effectively in response to the tumor environment.
  • Specific proteins, such as TRAP1, play crucial roles in managing oxidative stress and influencing cancer progression, suggesting that targeting energy metabolism pathways could be a promising therapeutic strategy to combat drug resistance.
View Article and Find Full Text PDF

Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay.

View Article and Find Full Text PDF

Syndesmos (SDOS) is a functionally poorly characterized protein that directly interacts with p53 binding protein 1 (53BP1) and regulates its recruitment to chromatin. We show here that SDOS interacts with another important cancer-linked protein, the chaperone TRAP1, associates with actively translating polyribosomes and represses translation. Moreover, we demonstrate that SDOS directly binds RNA in living cells.

View Article and Find Full Text PDF

Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1) is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells.

View Article and Find Full Text PDF

Regulation of tumour cell proliferation by molecular chaperones is still a complex issue. Here, the role of the HSP90 molecular chaperone TRAP1 in cell cycle regulation was investigated in a wide range of human breast, colorectal, and lung carcinoma cell lines, and tumour specimens. TRAP1 modulates the expression and/or the ubiquitination of key cell cycle regulators through a dual mechanism: (i) transcriptional regulation of CDK1, CYCLIN B1, and MAD2, as suggested by gene expression profiling of TRAP1-silenced breast carcinoma cells; and (ii) post-transcriptional quality control of CDK1 and MAD2, being the ubiquitination of these two proteins enhanced upon TRAP1 down-regulation.

View Article and Find Full Text PDF

HSP90 molecular chaperones (i.e., HSP90α, HSP90β, GRP94 and TRAP1) are potential therapeutic targets to design novel anticancer agents.

View Article and Find Full Text PDF

Shadoo (Sho), a member of prion protein family, has been shown to prevent embryonic lethality in Prnp mice and to be reduced in the brains of rodents with terminal prion diseases. Sho can also affect PrP structural dynamics and can increase the prion conversion into its misfolded isoform (PrP), which is amyloidogenic and strictly related to expression, intracellular localization and association of PrP to lipid rafts. We reasoned that if Sho possesses a natural tendency to convert to amyloid-like forms in vitro, it should be able to exhibit "prion-like" properties, such as PK-resistance and aggregation state, also in live cells.

View Article and Find Full Text PDF

Metabolic reprogramming is one of the most frequent stress-adaptive response of cancer cells to survive environmental changes and meet increasing nutrient requirements during their growth. These modifications involve cellular bioenergetics and cross talk with surrounding microenvironment, in a dynamic network that connect different molecular processes, such as energy production, inflammatory response, and drug resistance. Even though the Warburg effect has long been considered the main metabolic feature of cancer cells, recent reports identify mitochondrial oxidative metabolism as a driving force for tumor growth in an increasing number of cellular contexts.

View Article and Find Full Text PDF

TRAP1 is a HSP90 molecular chaperone upregulated in colorectal carcinomas and involved in control of intracellular signaling, cell cycle, apoptosis and drug resistance, stemness and bioenergetics through co-traslational regulation of a network of client proteins. Thus, the clinical significance of TRAP1 protein network was analyzed in human colorectal cancers. TRAP1 and/or its client proteins were quantified, by immunoblot analysis, in 60 surgical specimens of colorectal carcinomas at different stages and, by immunohistochemistry, in 9 colorectal adenomatous polyps, 11 in situ carcinomas and 55 metastatic colorectal tumors.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second leading cause of gynecological cancer death worldwide. Although the list of biomarkers is still growing, molecular mechanisms involved in OC development and progression remain elusive. We recently demonstrated that lower expression of the molecular chaperone TRAP1 in OC patients correlates with higher tumor grade and stage, and platinum resistance.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics.

View Article and Find Full Text PDF

The HSP90 chaperone TRAP1 is translational regulator of BRAF synthesis/ubiquitination, since BRAF down-regulation, ERK signaling inhibition and delay of cell cycle progression occur upon TRAP1 silencing/inhibition. Since TRAP1 is upregulated in human colorectal carcinomas (CRCs) and involved in protection from apoptosis and as human BRAF-driven CRCs are poorly responsive to anticancer therapies, the relationship between TRAP1 regulation of mitochondrial apoptotic pathway and BRAF antiapoptotic signaling has been further evaluated. This study reports that BRAF cytoprotective signaling involves TRAP1-dependent inhibition of the mitochondrial apoptotic pathway.

View Article and Find Full Text PDF

Cell motility is a highly dynamic phenomenon that is essential to physiological processes such as morphogenesis, wound healing and immune response, but also involved in pathological conditions such as metastatic dissemination of cancers. The involvement of the molecular chaperone TRAP1 in the regulation of cell motility, although still controversial, has been recently investigated along with some well-characterized roles in cancer cell survival and drug resistance in several tumour types. Among different functions, TRAP1-dependent regulation of protein synthesis seems to be involved in the migratory behaviour of cancer cells and, interestingly, the expression of p70S6K, a kinase responsible for translation initiation, playing a role in cell motility, is regulated by TRAP1.

View Article and Find Full Text PDF

Human BRAF-driven tumors are aggressive malignancies with poor clinical outcome and lack of sensitivity to therapies. TRAP1 is a HSP90 molecular chaperone deregulated in human tumors and responsible for specific features of cancer cells, i.e.

View Article and Find Full Text PDF