Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic reprogramming is one of the most frequent stress-adaptive response of cancer cells to survive environmental changes and meet increasing nutrient requirements during their growth. These modifications involve cellular bioenergetics and cross talk with surrounding microenvironment, in a dynamic network that connect different molecular processes, such as energy production, inflammatory response, and drug resistance. Even though the Warburg effect has long been considered the main metabolic feature of cancer cells, recent reports identify mitochondrial oxidative metabolism as a driving force for tumor growth in an increasing number of cellular contexts. In recent years, oxidative phosphorylation has been linked to a remodeling of inflammatory response due to autocrine or paracrine secretion of interleukines that, in turn, induces a regulation of gene expression involving, among others, molecules responsible for the onset of drug resistance. This process is especially relevant in ovarian cancer, characterized by low survival, high frequency of disease relapse and chemoresistance. Recently, the molecular chaperone TRAP1 (tumor necrosis factor-associated protein 1) has been identified as a key junction molecule in these processes in ovarian cancer: in fact, TRAP1 mediates a metabolic switch toward oxidative phosphorylation that, in turn, triggers cytokines secretion, with consequent gene expression remodeling, finally leading to cisplatin resistance and epithelial-to-mesenchymal transition in ovarian cancer models. This review summarizes how metabolism, chemoresistance, inflammation, and epithelial-to-mesenchymal transition are strictly interconnected, and how TRAP1 stays at the crossroads of these processes, thus shedding new lights on molecular networks at the basis of ovarian cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.apcsb.2017.01.004DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
drug resistance
12
stress-adaptive response
8
cancer cells
8
inflammatory response
8
oxidative phosphorylation
8
gene expression
8
epithelial-to-mesenchymal transition
8
cancer
7
ovarian
5

Similar Publications

Background: Local control strategies in pediatric oncology are guided by disease-specific considerations. Effective communication of the goals of surgical procedure and associated intraoperative events plays a crucial role in shaping subsequent treatment decisions. However, accurately and comprehensively documenting these findings remains challenging, with considerable variability across different tumor types.

View Article and Find Full Text PDF

We previously screened a peptide PDBAG1 that remarkably inhibited triple-negative breast cancer, and found that its target was C1QBP. Recently, C1QBP has been reported as a potential tumor marker in ovarian cancer, which of the mortality rate ranks first among malignant tumors of the female reproductive tract. However, it is unclear whether and how PDBAG1 plays a regulatory role in ovarian cancer.

View Article and Find Full Text PDF

Platinum-group metal half-sandwich complexes are considered to be potential replacements of the clinically widely used platins which have several side effects and tend to cause resistance to develop. In our previous works, we used a range of 2-pyridyl-substituted N- and C-glycosyl heterocycles as N,N-chelating ligands to prepare ruthenium(II), osmium(II), iridium(III) and rhodium(III) polyhapto arene/arenyl half-sandwich complexes. Some of these complexes, particularly with the C-glucopyranosyl isoxazole derived ligand in its O-perbenzoylated form, exhibited greater anticancer efficiency than cisplatin and had minimal or negligible effects on non-transformed fibroblasts.

View Article and Find Full Text PDF

GJB2 promotes ovarian cancer progression and cisplatin resistance by upregulating TNC expression.

Biochim Biophys Acta Mol Cell Res

September 2025

Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China. Electronic address: wu

Cisplatin resistance continues to be a major obstacle in the treatment of ovarian cancer (OC). Gap junction protein β-2 (GJB2), a key member of the connexin family, is well-known for its association with hereditary deafness. However, its role in ovarian cancer chemotherapy resistance remains unexplored.

View Article and Find Full Text PDF

Development of six novel dinuclear calcium(II) complexes based on 8-hydroxyquinoline as anticancer agents.

J Inorg Biochem

September 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China. Electronic address:

This study reports the synthesis and antitumor evaluation of six novel dinuclear calcium(II) complexes with the general formula [Ca(μ-O)(QM)(QH)], designated as CaQ1 through CaQ6. These complexes incorporate various deprotonated 8-hydroxyquinoline ligands (H-QM-H-QM) and 1,10-phenanthroline derivatives (QH), synthesized using Ca(NO)·4HO. The specific compositions are as follows: CaQ1: H-QM = 5,7-dibromo-8-hydroxyquinoline (x = 1), QH = bathophenanthroline; CaQ2: H-QM = 5,7-dichloro-8-quinolinol (x = 2), QH = bathophenanthroline; CaQ3: H-QM = 5,7-diiodo-8-hydroxyquinoline (x = 3), QH = 1,10-phenanthroline; CaQ4: H-QM = 5,7-dichloro-8-quinolinol (x = 2), QH = 1,10-phenanthroline; CaQ5: H-QM = clioquinol (x = 4), QH = 1,10-phenanthroline; CaQ6: H-QM = 5,7-dibromo-8-hydroxyquinoline (x = 1), QH = 1,10-phenanthroline.

View Article and Find Full Text PDF