A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An Electrochemiluminescence-Activated Amphiphilic Perylene Diimide Probe: Enabling Highly Sensitive and Selective Detection of Polypropylene Nanoplastics in the Environment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoplastic pollution has emerged as a significant issue in both the environmental and human health fields. However, developing highly sensitive approaches to promptly identify and detect low concentrations of nanoplastics within complex systems remains a considerable challenge. Here, we utilized the amphiphilic perylene diimide (PDI-NH) as a probe in combination with electrochemiluminescence (ECL) for the sensitive detection of polypropylene (PP) nanoplastics. The PDI-NH probe shows a remarkable enhancement of the ECL signal on PP in aqueous solutions, presenting a concentration-dependent response. This enables the ultrasensitive and specific detection of PP in aqueous solutions with a detection limit as low as 0.948 mg·L. A series of comprehensive experiments indicate that PDI-NH binds to PP through electrostatic and hydrophobic interactions. Moreover, isothermal titration calorimetry and density functional theory (DFT) calculations further confirm that the enhancement of the ECL signal can be attributed to the strong and significant affinity between PDI-NH and nanoplastics. This strong affinity leads to a significantly high electron transfer rate. Additionally, it is notable that the ECL probe proved its effectiveness in detecting PP in actual samples, opening up possibilities for its application in monitoring and assessing nanoplastics pollution in various environmental and industrial settings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c07054DOI Listing

Publication Analysis

Top Keywords

amphiphilic perylene
8
perylene diimide
8
highly sensitive
8
detection polypropylene
8
polypropylene nanoplastics
8
pdi-nh probe
8
enhancement ecl
8
ecl signal
8
aqueous solutions
8
strong affinity
8

Similar Publications