Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have developed a platform for the multiplexed and ultrasensitive profiling of individual extracellular vesicles (EVs) directly in plasma, which we call GDEVA─Agarose microel-based igital single-molecule-single ssay. GDEVA achieves single-molecule sensitivity and moderate multiplexing (demonstrated 3-plex), and can achieve a throughput of ∼10 EVs per minute necessary to resolve EVs directly in human plasma when read out using flow cytometry. Our platform integrates a rolling circle amplification (RCA) immunoassay of EV surface proteins, which are cleaved from single EVs, and amplified within agarose microgels, followed by flow cytometry-based readout or imaging after fluorescence-activated cell sorting (FACS). It overcomes steric hindrance of RCA products, nonspecific binding of RCA templates, and the lack of quantitation of multiple proteins on EVs that have plagued earlier approaches. We evaluated the analytical capabilities of GDEVA through head-to-head comparison with conventional technology and demonstrated a ∼100× improvement in the limit of detection (LOD) of EV subpopulations. We evaluate GDEVA's potential in cancer immunology, by analyzing single EVs in plasma samples from patients with melanoma, where EV heterogeneity plays a critical role in disease progression and response to therapy. We demonstrate profiling of individual EVs for key immune markers PD-L1, CD155, and the melanoma marker TYRP-1, and showed that GDEVA can precisely quantify EVs, offering the resolution to detect rare EV subpopulations in complex clinical specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5c04207DOI Listing

Publication Analysis

Top Keywords

circle amplification
8
extracellular vesicles
8
profiling individual
8
evs
8
evs directly
8
single evs
8
agarose microgel-based
4
microgel-based situ
4
situ cleavable
4
cleavable immuno-rolling
4

Similar Publications

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF

Smartphone-assisted colorimetric detection of FEN1 and its inhibitors via RCA-magnetic beads-urease cascade amplification.

Biosens Bioelectron

September 2025

College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830017, China; State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy

Given the pivotal role of Flap endonuclease 1 (FEN1) in tumor pathogenesis and progression, the advancement of its activity and inhibitor assays holds significant importance for cancer research and drug screening. Herein, we proposed a convenient, visual and sensitive colorimetric biosensing platform for FEN1 activity detection by integrating the robust signal amplification power of rolling circle amplification (RCA), the target enrichment capability of magnetic beads (MB), and the high efficiency and visualization of urease-mediated litmus test. Based on the significant color transition with a clear response mechanism, quantitative analysis can be achieved by either spectroscopic or smartphone-based detection.

View Article and Find Full Text PDF

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

Rolling circle amplification for next-generation molecular diagnostics, genome analysis, and spatial transcriptome profiling.

Nanoscale

September 2025

Department of Bioengineering & Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.

Rolling circle amplification (RCA) has emerged as a highly versatile and robust isothermal amplification technology, offering exceptional sensitivity, specificity, and scalability for next-generation molecular diagnostics and multi-omics research. Its ability to generate long, repetitive DNA sequences with high fidelity has made it a pivotal tool in disease diagnostics, genomic analysis, and spatial transcriptome profiling. Recent advancements have expanded RCA into various formats, including solution-phase, solid-phase, hydrogel-based, and digital RCA, enhancing its analytical performance and adaptability across diverse biological applications.

View Article and Find Full Text PDF

Replication competition drives the selective mtDNA inheritance in Drosophila ovary.

Cell Rep

September 2025

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Purifying selection that limits the transmission of harmful mitochondrial DNA (mtDNA) mutations has been observed in both human and animal models. Yet, the precise mechanism underlying this process remains undefined. Here, we present a highly specific and efficient in situ imaging method capable of visualizing mtDNA variants that differ by only a few nucleotides at single-molecule resolution in Drosophila ovaries.

View Article and Find Full Text PDF