98%
921
2 minutes
20
Improving our understanding of how environmental pollution affects aquatic life requires a holistic approach. This study provides new insights into the intrinsic biological defence of brown trout (Salmo trutta m. fario L.) against chemical pollution in a stream with a low-dilution factor, a common scenario in headwaters globally. Fish restocked downstream of a sewage treatment plant (STP) were compared with a control group upstream of STP. Trout tissues were sampled after 6, 14, and 24 weeks and subjected to biochemical and histological analyses. Passive samplers were deployed at both stream stretches to reflect concentrations of freely dissolved organic micropollutants and their bioactivity effects using in vitro reporter gene bioassays. Chemical analysis downstream revealed elevated concentrations of micropollutants compared to upstream. In vitro bioassays detected increased androgenicity, estrogenicity, and transthyretin-binding inhibition. Antioxidant and biotransformation enzyme activities in fish indicated gradual acclimation to pollution despite minor histopathological changes. Elevated vitellogenin and 17β-estradiol in males suggested pollution-induced endocrine disruption. Although the results obtained from water chemical profiling and bioassays have a causal relationship to fish health, trout's molecular defence system allowed gradual acclimation to pollution, mitigating broader ecological impacts. The study advanced the knowledge of how fish cope with wastewater-borne micropollutants in aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.138433 | DOI Listing |
Dev Comp Immunol
September 2025
Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA. Electronic address:
Several studies have described immune responses in the teleost brain and meninges during infection, however, fundamental studies that systematically dissect how different regions of the brain maintain immune homeostasis in teleosts are missing. Here we present an in-depth investigation of the immune status of the brain parenchyma and meninges of juvenile rainbow trout (Oncorhynchus mykiss) at the steady state. We dissected four parenchymal brain regions including olfactory bulbs (OB), telencephalon (Tel), optic tectum (OT) and cerebellum (Cer) and its corresponding dorsal meninges.
View Article and Find Full Text PDFRespir Physiol Neurobiol
September 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada, V6T1Z4. Electronic address:
In vertebrates, the basic respiratory rhythm is modified by both sensory feedback and input from higher centers to produce a broad range of breathing patterns. In carp (Cyprinus carpio L.), breathing is often episodic while in trout (Onchorhynchus mykiss) it is continuous and rhythmic except when water is hyperoxic.
View Article and Find Full Text PDFInt J Parasitol
September 2025
School of Public Health, University of Alberta, 357 South Academic Building, Edmonton, Alberta, Canada T6G 2G7. Electronic address:
Whirling disease is a debilitating disease of Rainbow Trout caused by Myxobolus cerebralis. The parasite invasion leads to skeletal deformities, neurological impairment, and high mortality. Since its introduction to North America, M.
View Article and Find Full Text PDFJ Fish Biol
September 2025
Department of Biological Sciences, University of New Brunswick - Saint John, Saint John, New Brunswick, Canada.
Many Arctic fishes experience prolonged periods of extreme cold and large thermal variation over both rapid and seasonal time scales which challenge critical physiological functions. In the central Canadian Arctic, we caught wild adult lake trout (Salvelinus namaycush) acclimatized to winter and summer temperatures to determine the extent to which they seasonally adjust cardiac thermal performance and adrenergic control. We assessed the intrinsic and maximum heart rate (f and f) of anaesthetised fish through cholinergic blockade and either adrenergic blockade (f) or stimulation (f) during acute warming.
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Animal Science, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord, Iran.
This study aimed to determine the effects of dietary red ginseng, Panax ginseng powder (RGP), on the growth performance, immunity, antioxidant system, and disease resistance of the rainbow trout, Oncorhynchus mykiss. Eight experimental groups were established, including a control group and seven groups fed varying levels of ginseng powder (5 to 35 g/kg) over 60 days, followed by a challenge with Streptococcus iniae. The results indicated that ginseng supplementation significantly enhanced growth parameters (P < 0.
View Article and Find Full Text PDF