Dual-stabilized selenium nanoparticles with chitosan and SS31 peptide: Resolving instability for enhancing ROS elimination, suppressing inflammation, and combating bacterial infections.

Colloids Surf B Biointerfaces

Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China; Jiangsu Province Engineering Research Center of StomatologicalTranslational Medicine, Nanjing, PR China. Electron

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Selenium nanoparticles (SeNPs) hold significant promise for managing inflammatory microenvironments due to their anti-inflammatory, antioxidant, and tissue-regenerative properties. However, their poor stability limits practical applications. To address this, we developed a novel nanocomposite by co-stabilizing SeNPs with chitosan and the mitochondria-targeting peptide SS31 (CS/SS31-SeNPs) via a redox synthesis method. The optimized CS/SS31-SeNPs exhibited a uniform spherical structure (82 nm diameter, +48 mV zeta potential) and exceptional stability (no aggregation over 90 days), as confirmed by dynamic light scattering, TEM, EDX, XPS and TGA analyses. The nanocomposites demonstrated enhanced reactive oxygen species (ROS) scavenging efficiency in vitro and in vivo. In a copper sulfate-induced zebrafish inflammation model, CS/SS31-SeNPs pretreatment reduced neutrophil and macrophage recruitment by 38.07 % and 43.56 %, respectively, outperforming bare SeNPs. Furthermore, CS/SS31-SeNPs exhibited superior antibacterial activity against Staphylococcus aureus, achieving near-complete growth inhibition at 64 μM. Mechanistic studies revealed that the antibacterial action stems from targeting the conserved MraY enzyme in peptidoglycan synthesis. Molecular docking indicated stable binding (-15.6 kcal/mol) of CS/SS31-SeNPs to MraY's uracil pocket and adjacent sites-a mechanism distinct from conventional antibiotics, suggesting broad-spectrum potential. By synergistically integrating chitosan's antibacterial properties with SS31's mitochondrial targeting, CS/SS31-SeNPs overcome SeNPs instability while amplifying their therapeutic efficacy. This multifunctional platform offers a promising strategy for treating oral-craniofacial inflammatory and infectious diseases, with implications for antibiotic resistance mitigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2025.114749DOI Listing

Publication Analysis

Top Keywords

selenium nanoparticles
8
cs/ss31-senps exhibited
8
cs/ss31-senps
6
dual-stabilized selenium
4
nanoparticles chitosan
4
chitosan ss31
4
ss31 peptide
4
peptide resolving
4
resolving instability
4
instability enhancing
4

Similar Publications

A 60-day research was conducted to evaluate the influence of dietary fish oil (FO) and selenium nanoparticles (SeNPs) on performance of juveniles (2.4 ± 0.0 g) reared in seawater (SW) or hypersaline (HS) water conditions.

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF

Corrigendum to "Effect of molecular weight of chitosan and its oligosaccharides on antitumor activities of chitosan‑selenium nanoparticles" carbohydrate polymers, 2020, 231:115689.

Carbohydr Polym

November 2025

Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China

View Article and Find Full Text PDF

Selenite contamination poses a significant environmental risk due to its high toxicity, mobility, and bioavailability, and further threatens ecological stability and human health via biological accumulation in trophic chains. Microbial transformation of selenite into selenium nanoparticles (SeNPs) represents a promising and sustainable bioremediation strategy. However, the underlying mechanisms in environmentally prevalent yeasts remain largely uncharacterized.

View Article and Find Full Text PDF

Rainbow trout(Oncorhynchus mykiss) is a typical cold-water fish often threatened by high summer temperatures. Nano-selenium as a feed additive can improve the antioxidant capacity of the body and relieve stress. In this study, different levels of nano-selenium (0, 5 and 10 mg/kg) were added to the feed of rainbow trout to determine the changes in spleen structure and expression of related genes in rainbow trout at the proper temperature (18℃) and heat stress temperature (24℃).

View Article and Find Full Text PDF