98%
921
2 minutes
20
Selenium nanoparticles (SeNPs) hold significant promise for managing inflammatory microenvironments due to their anti-inflammatory, antioxidant, and tissue-regenerative properties. However, their poor stability limits practical applications. To address this, we developed a novel nanocomposite by co-stabilizing SeNPs with chitosan and the mitochondria-targeting peptide SS31 (CS/SS31-SeNPs) via a redox synthesis method. The optimized CS/SS31-SeNPs exhibited a uniform spherical structure (82 nm diameter, +48 mV zeta potential) and exceptional stability (no aggregation over 90 days), as confirmed by dynamic light scattering, TEM, EDX, XPS and TGA analyses. The nanocomposites demonstrated enhanced reactive oxygen species (ROS) scavenging efficiency in vitro and in vivo. In a copper sulfate-induced zebrafish inflammation model, CS/SS31-SeNPs pretreatment reduced neutrophil and macrophage recruitment by 38.07 % and 43.56 %, respectively, outperforming bare SeNPs. Furthermore, CS/SS31-SeNPs exhibited superior antibacterial activity against Staphylococcus aureus, achieving near-complete growth inhibition at 64 μM. Mechanistic studies revealed that the antibacterial action stems from targeting the conserved MraY enzyme in peptidoglycan synthesis. Molecular docking indicated stable binding (-15.6 kcal/mol) of CS/SS31-SeNPs to MraY's uracil pocket and adjacent sites-a mechanism distinct from conventional antibiotics, suggesting broad-spectrum potential. By synergistically integrating chitosan's antibacterial properties with SS31's mitochondrial targeting, CS/SS31-SeNPs overcome SeNPs instability while amplifying their therapeutic efficacy. This multifunctional platform offers a promising strategy for treating oral-craniofacial inflammatory and infectious diseases, with implications for antibiotic resistance mitigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2025.114749 | DOI Listing |
Aquac Nutr
August 2025
Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran.
A 60-day research was conducted to evaluate the influence of dietary fish oil (FO) and selenium nanoparticles (SeNPs) on performance of juveniles (2.4 ± 0.0 g) reared in seawater (SW) or hypersaline (HS) water conditions.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France
Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China
J Hazard Mater
September 2025
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China. Electronic address:
Selenite contamination poses a significant environmental risk due to its high toxicity, mobility, and bioavailability, and further threatens ecological stability and human health via biological accumulation in trophic chains. Microbial transformation of selenite into selenium nanoparticles (SeNPs) represents a promising and sustainable bioremediation strategy. However, the underlying mechanisms in environmentally prevalent yeasts remain largely uncharacterized.
View Article and Find Full Text PDFFish Physiol Biochem
September 2025
College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
Rainbow trout(Oncorhynchus mykiss) is a typical cold-water fish often threatened by high summer temperatures. Nano-selenium as a feed additive can improve the antioxidant capacity of the body and relieve stress. In this study, different levels of nano-selenium (0, 5 and 10 mg/kg) were added to the feed of rainbow trout to determine the changes in spleen structure and expression of related genes in rainbow trout at the proper temperature (18℃) and heat stress temperature (24℃).
View Article and Find Full Text PDF