98%
921
2 minutes
20
Metalloenzyme cofactors and oxygen conditions are crucial for microbial metabolism, yet their combined effects on microbial ecosystems remain unexplored. This study explores the impact of micronutrient amendments (Zn, Fe, Co and their combinations) on the microbial community composition in oxygenated (73 m) and deoxygenated (200 m) waters of the Arabian Sea. Through controlled microcosm experiment and 16S rRNA amplicon sequencing, we observed that micronutrients significantly alter nutrient concentrations and microbial dynamics. At 73 m, micronutrient treatments reduced nitrate, nitrite and ammonia levels, whereas at 200 m, they increased nitrate and silicate levels. Total bacterial counts (TBCs) were higher in all treatments at both depths, with Fe showing the highest counts. Alpha diversity indicated that Fe-amended flask increased microbial diversity the most at 73 m, while mixed treatments had a pronounced effect at 200 m. Taxonomic analysis revealed significant genus-level variations in both bacteria and archaea. One-way analysis of variance (ANOVA) confirmed micronutrient impacts on nutrients and TBC. Canonical correspondence analysis (CCA) and non-metric multidimensional scaling (NMDS) revealed distinct clustering based on oxygen conditions. These results confirm our hypothesis that micronutrient amendments in varying oxygen levels distinctly alter microbial community composition and nutrient cycling in marine environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046384 | PMC |
http://dx.doi.org/10.1111/1758-2229.70072 | DOI Listing |
Biomed Environ Sci
August 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: This study aimed to reexplore minimum iodine excretion and to build a dietary iodine recommendation for Chinese adults using the obligatory iodine loss hypothesis.
Methods: Data from 171 Chinese adults (19-21 years old) were collected and analyzed based on three balance studies in Shenzhen, Yinchuan, and Changzhi. The single exponential equation was accordingly used to simulate the trajectory of 24 h urinary iodine excretion as the low iodine experimental diets offered (iodine intake: 11-26 μg/day) and to further deduce the dietary reference intakes (DRIs) for iodine, including estimated average requirement (EAR) and recommended nutrient intake (RNI).
J Hazard Mater
September 2025
Department of Public Health Sciences, University of Texas at El Paso, 211 Kelly Hall, 500 W University, El Paso, TX 79902, USA. Electronic address:
The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile.
Changes in consumption patterns, urbanization, and industrialization have led to the generation of large volumes of municipal solid waste (MSW), posing threats to environmental sustainability. This study aimed to compost the organic fraction of municipal solid waste (OFMSW) using three composting methods: windrow (WC), pit (PC), and drum composting (DC). Distilled water was used in compost preparation and sample analysis.
View Article and Find Full Text PDFBiometals
August 2025
Department of Biology, College of Science, Mustansiriyah University, Palestine Street, Baghdad, Iraq.
Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus (DM). Evidence suggests that trace element imbalances may contribute to the development and progression of DR. This study aimed to evaluate the levels of selected trace elements in Iraqi patients with DM, with and without retinopathy, to identify potential biomarkers associated with disease progression.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China. Electronic address:
Ferric oxides play a critical role in transforming organic contaminants within anaerobic aquaculture sediments; however, their effect on the removal of antibiotics and antibiotic resistance genes (ARGs) remains unexplored. This study revealed that the addition of FeO significantly promoted microbial Fe(III) reduction, SMX degradation, and methanogenesis by enhancing metabolic activity and facilitating electron transfer. While nutrient supplementation similarly improved SMX removal, it notably increased ARG abundance, unlike FeO, which effectively suppressed ARGs.
View Article and Find Full Text PDF