Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Post-stroke pain is heterogeneous and includes both nociceptive and neuropathic pain. These subtypes can be comprehensively assessed using several clinical tools, such as pain-related questionnaires, quantitative somatosensory tests and brain imaging. In the present study, we conducted a comprehensive assessment of patients with central post-stroke pain and non-central post-stroke pain and analysed their clinical features. We also performed a detailed analysis of the relationships between brain lesion areas or structural disconnection of the white matter and somatosensory dysfunctions. In this multicentre cross-sectional study, 70 patients were divided into 24 with central post-stroke pain, 26 with non-central post-stroke pain and 20 with no-pain groups. Multiple logistic regression analysis was used to summarize the relationships between each pathological feature (for the central post-stroke pain and non-central post-stroke pain groups) and pain-related factors or the results of quantitative somatosensory tests. Relationships between somatosensory dysfunctions and brain lesion areas were analysed using voxel-based lesion-symptom mapping and voxel-based disconnection-symptom mapping. All pathology feature models indicated that central post-stroke pain was associated with cold hypoesthesia at 8°C (β = 2.98, odds ratio = 19.6, 95% confidence interval = 2.7-141.8), cold hyperalgesia at 8°C (β = 2.61, odds ratio = 13.6, 95% confidence interval = 1.13-163.12) and higher Neuropathic Pain Symptom Inventory scores (for spontaneous and evoked pain items only; β = 0.17, odds ratio = 1.19, 95%, confidence interval = 1.07-1.32), whereas non-central post-stroke pain was associated with joint pain (β = 5.01, odds ratio = 149.854, 95%, confidence interval = 19.93-1126.52) and lower Neuropathic Pain Symptom Inventory scores (β = -0.17, odds ratio = 0.8, 95%, confidence interval = 0.75-0.94). In the voxel-based lesion-symptom mapping, the extracted lesion areas indicated mainly voxels significantly associated with cold hyperalgesia, allodynia at 8°C and 22°C and heat hypoesthesia at 45°C. These extracted areas were mainly in the putamen, insular cortex, hippocampus, Rolandic operculum, retrolenticular part of internal and external capsules and sagittal stratum. In voxel-based disconnection-symptom mapping, the extracted disconnection maps were significantly associated with cold hyperalgesia at 8°C, and heat hypoesthesia at 37°C and 45°C. These structural disconnection patterns were mainly in the cingulum frontal parahippocampal tract, the reticulospinal tract and the superior longitudinal fasciculus with a widespread interhemispheric disconnection of the corpus callosum. These findings serve as important indicators to facilitate decision-making and optimize precision treatments through data dimensionality reduction when diagnosing post-stroke pain using clinical assessments, such as bedside quantitative sensory testing, pain-related factors, pain questionnaires and brain imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042915PMC
http://dx.doi.org/10.1093/braincomms/fcaf128DOI Listing

Publication Analysis

Top Keywords

post-stroke pain
44
odds ratio
20
95% confidence
20
confidence interval
20
pain
17
central post-stroke
16
non-central post-stroke
16
neuropathic pain
12
pain non-central
12
lesion areas
12

Similar Publications

Development of the SCI-BodyMap-Measuring Mental Body Representations in Adults With Spinal Cord Injury: Protocol for Item Generation, Reliability, and Validity Testing.

JMIR Res Protoc

September 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota-Twin Cities, Minneapolis, MN, United States.

Background: Approximately 69% of Americans with spinal cord injury (SCI) have neuropathic pain. Research suggests that impairments in mental body representations (MBRs; ie, representations of the body in the brain) likely contribute to neuropathic pain. Clinical trials in adults with SCI, focused on restoring MBR, led to improvements in sensation and movement as well as neuropathic pain relief.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition that may develop after fractures, surgery, or soft tissue trauma. It is characterized by pain disproportionate to the initial injury, often accompanied by sensory, motor, autonomic, and trophic changes. Despite extensive research, pathophysiology remains unclear, and treatment approaches are varied, with inconsistent supporting evidence.

View Article and Find Full Text PDF

Central post-stroke pain (CPSP) is an intractable neuropathic pain syndrome. Dual-target deep brain stimulation (DBS), which integrates sensory thalamic modulation and endogenous analgesic pathways, has emerged as a potential intervention; however, clinical evidence remains scarce. We report a 54-year-old woman who developed right-sided limb paresthesia progressing to persistent right hemibody pain following a left thalamic hemorrhage.

View Article and Find Full Text PDF

Background And Purpose: Central post-stroke pain (CPSP) is directly caused by cerebrovascular diseases that affect the central somatosensory system. It is a serious, chronic central neuropathic pain that responds poorly to first-line drugs. Oxymatrine (OMT), a monomer derived from the traditional Chinese medicine Ait.

View Article and Find Full Text PDF

Many patients with spasticity report pain which can be debilitating. Numerous studies have shown onabotulinumtoxinA (onabotA) is efficacious in the management of spasticity but comprehensive data on its impact on spasticity-associated pain is limited. This systematic review aimed to assess the published evidence on the efficacy of onabotA in the management of pain in adults with spasticity.

View Article and Find Full Text PDF