Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acute brain injury (ABI) is prevalent among patients undergoing venoarterial extracorporeal membrane oxygenation (VA-ECMO) and significantly impact recovery. Early prediction of ABI could enable timely interventions to prevent adverse outcomes, but existing predictive methods remain suboptimal. This study aimed to enhance ABI prediction using machine learning (ML) models and high-temporal-resolution granular data. We retrospectively analyzed 355 VA-ECMO patients treated at Johns Hopkins Hospital (JHH) from 2016 to 2024, collecting over 3 million data points from the JHH Research Electronic Data Capture (REDCap) database, with an average of 80,000 data points per patient. Acute brain injury was defined as ischemic stroke, intracranial hemorrhage, hypoxic-ischemic brain injury, or seizure. Four ML models were used: Random Forest, Categorical Boosting, Adaptive Boosting, and Extreme Gradient Boosting. Among 355 patients (median age 59 years, 56.9% male), 13.5% developed ABI. The models achieved an optimal area under the receiver operating characteristic curve (AUROC) of 0.79, accuracy of 87%, sensitivity of 53%, specificity of 99%, and precision-recall (PR)-AUC of 0.47. Key predictors included high minimum values of systolic blood pressure and variability in on-ECMO pulse pressure. High-resolution granular data enhanced ML performance for ABI prediction. Future efforts should focus on integrating continuous data platforms to enable real-time monitoring and personalized care, optimizing patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354110PMC
http://dx.doi.org/10.1097/MAT.0000000000002449DOI Listing

Publication Analysis

Top Keywords

brain injury
16
acute brain
12
machine learning
8
venoarterial extracorporeal
8
extracorporeal membrane
8
membrane oxygenation
8
abi prediction
8
granular data
8
data points
8
data
6

Similar Publications

Perinatal stroke is a vascular injury occurring early in life, often resulting in motor deficits (hemiplegic cerebral palsy/HCP). Comorbidities may also include poor neuropsychological outcomes, such as deficits in memory. Previous studies have used resting state functional MRI (fMRI) to demonstrate that functional connectivity (FC) within hippocampal circuits is associated with memory function in typically developing controls (TDC) and in adults after stroke, but this is unexplored in perinatal stroke.

View Article and Find Full Text PDF

Mechanism of post cardiac arrest syndrome based on animal models of cardiac arrest.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Scool of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072.

Cardiac arrest (CA) is a critical condition in the field of cardiovascular medicine. Despite successful resuscitation, patients continue to have a high mortality rate, largely due to post CA syndrome (PCAS). However, the injury and pathophysiological mechanisms underlying PCAS remain unclear.

View Article and Find Full Text PDF

Investigating the impact of hyperbilirubinemia on cognitive dysfunction in adult zebrafish: an in vivo model.

Korean J Anesthesiol

September 2025

Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea.

Background: Despite the well-known effects of elevated bilirubin in neonates, its neurotoxic potential in adults remains uncertain. In perioperative and hepatic disease contexts, transient bilirubin elevations are common; however, their direct contribution to cognitive dysfunction has not been clearly established. This study aimed to determine whether transient bilirubin elevation alone can impair cognition and disrupt blood-brain barrier (BBB) function in adult zebrafish, and to compare these effects with those of liver injury.

View Article and Find Full Text PDF

Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.

View Article and Find Full Text PDF

Background And Purpose: To review the existing evidence on multiple timepoint assessments of optic nerve sheath diameter (ONSD) as an indicator of intraindividual variation of intracranial pressure (ICP).

Methods: A systematic search identified studies assessing intraindividual variation in ICP through multiple timepoint measurements of ONSD using ultrasonography. Meta-analysis of studies assessing intraindividual correlation coefficients between ONSD and ICP was performed using a random effects model, and we calculated the weighted correlation coefficient for the expected change in ICP associated with variations in ONSD.

View Article and Find Full Text PDF