98%
921
2 minutes
20
The fall armyworm () is a major invasive pest. To explore its adaptive mechanisms under temperature stress, we conducted transcriptome analysis across six developmental stages and both sexes at 0, 26, and 46 °C. High-temperature stress induced more differentially expressed genes (DEGs, 8,703) than low-temperature stress (5,426), with fourth instar larvae showing the most DEGs at low temperatures. Sex-specific responses were also evident. Sixteen heat shock protein (HSP) genes and 31 apoptosis-related genes were identified as key stress-responsive factors. RNAi knockdown of and reduced survival under temperature stress, increased ROS and Cyt levels, and upregulated apoptosis-related genes, while ATP levels decreased. Elevated caspase-3, G6PD, and GST activities further indicated oxidative and apoptotic responses. These results underscore the essential role of HSPs in maintaining cellular homeostasis and regulating apoptosis during thermal stress, offering insights into pest adaptation and potential control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.5c02002 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Global warming causes heat stress in livestock, impairing their health, welfare, and productivity. In bovines, chronic stress elevates cortisol levels; however, this response often goes undetected due to the lack of practical biomatrices for accurate assessment. Common biomatrices such as blood require repeated sampling that may affect measurement accuracy.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Department of Earth Sciences, University College London, London, United Kingdom.
We have developed a new true triaxial apparatus for rock deformation, featuring six servo-controlled loading rams capable of applying maximum stresses of 220 MPa along the two horizontal axes and 400 MPa along the vertical axis to cubic rock samples of 50 mm side. Samples are introduced into a steel vessel, allowing rock specimens to be subjected to confining pressures of up to 60 MPa. Pore fluid lines connected to two pump intensifiers enable high-precision permeability measurements along all three principal stress directions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.
View Article and Find Full Text PDF