98%
921
2 minutes
20
The electrocatalytic nitrate reduction reaction (eNORR) is an environmentally friendly process that converts nitrate wastewater into high-value ammonia (NH). However, the multi-step electron and proton transfer in this reaction leads to slow kinetics and competitive reactions, making it challenging to achieve energy-efficient performance. Herein, a CuCoO/γ-Cu(OH)Cl (CCOC) composite has been prepared as an electrocatalyst for the eNORR. The CCOC catalyst demonstrated an outstanding NH yield rate of 10.71 mg h cm and a remarkable faradaic efficiency (FE) of 95.9% in a 0.5 M NaSO neutral solution containing 0.1 M NO, surpassing most reported catalysts under neutral conditions. investigations demonstrated that CuCoO with high-valent Cu and Co significantly enhances HO dissociation and proton production while also promoting the adsorption of NO and *NH intermediates. These properties contribute to the high NH selectivity and activity observed under neutral conditions. This work demonstrates CuCoO/γ-Cu(OH)Cl as a promising candidate for the sustainable and efficient production of NH through the eNORR, offering new insights into efficient nitrate reduction in neutral environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5nr00538h | DOI Listing |
Angew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
The metal-nitrogen chelated species, MN, have shown promise as efficient electrocatalysts for nitrate reduction, yet the symmetric arrangement of N atoms results in suboptimal adsorption affinity toward reaction substrates and intermediates. The current approaches to breaking the symmetry of MN suffer from inaccuracy and inhomogeneity because of the lack of strategies stemming from molecular design aspects. Herein, we report the construction of symmetry-broken MNO sites in coordination polymers via sequential coordination-covalent control in a one-pot reaction.
View Article and Find Full Text PDFNano Lett
September 2025
Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
Ampere-level electrocatalytic nitrate reduction to ammonia (eNRA) offers a carbon-neutral alternative to the Haber-Bosch process. However, its energy efficiency is critically hampered by the inherent conflict between the reaction and diffusion. Herein, we propose a reaction-diffusion-coupled strategy implemented on a well-tailored CuCoNiRuPt high-entropy alloy aerogel (HEAA) to simultaneously realize energy barrier homogenization and accelerate mass transport, endowing ampere-level eNRA with a high energy efficiency.
View Article and Find Full Text PDFWater Res
September 2025
Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang, 050061, China.
Groundwater nitrate (NO) and sulfate (SO) pollution in semi-arid regions has attracted widespread attention. However, unveiling the dynamics and sources of NO and SO in regional groundwater is challenging because of complex anthropogenic activities and hydrogeological conditions. This study combined physicochemistry and multiple stable isotopes (δH-HO, δO-HO, δN-NO, δO-NO, δS-SO, and δO-SO) to explore the spatiotemporal patterns, driving factors, sources, and potential health hazards of NO and SO in groundwater on the Loess Plateau, China.
View Article and Find Full Text PDFJ Contam Hydrol
September 2025
School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
Biological denitrification is an essential method for sewage treatment, though its efficiency is often constrained by low temperatures and insufficient organic carbon sources. In this study, a novel cold-tolerant heterotrophic nitrification-aerobic denitrification bacterium, Pseudomonas fluorescens sp. Z03, was isolated from activated sludge, and its denitrification performance was evaluated.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Geosciences, University of Bremen, Bremen, Germany.
Surveillance monitoring of shallow groundwater revealed that redox conditions can vary on a small scale. Therefore, the aim of this study was to categorize redox conditions in the groundwater of Lower Saxony, Germany, and to analyze the spatial distribution and trends of parameters related to redox conditions during surveillance monitoring from 1957 to 2015 in Lower Saxony, Germany. Methodically, trends were considered by applying the Mann-Kendall test and redox conditions of groundwater were classified according to the scheme of Jurgens et al.
View Article and Find Full Text PDF