Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is very different from that of ordinary buildings due to the unique operational characteristics of university teaching-office buildings, and the energy-saving potential is huge, among them, the building's exterior envelope is an important factor in its energy loss. It is an important basis for building energy conservation to explore the influence of the thermal parameter of the building exterior envelope on energy consumption from the perspective of thermal theory. Meanwhile, most of the buildings are old in university, limited by the actual conditions, studying the energy-saving optimization scheme from the main influencing factors and actual characteristics is a prerequisite for achieving high efficiency and energy saving. Therefore, based on the actual characteristics of university buildings, the influence law of the thermal performance of the exterior envelopes on energy demands is explored in this study through numerical simulation, and an energy-saving optimization scheme is proposed based on the existing materials. The results show that: (1) For university buildings in Chengdu, the energy-saving effect of the interior thermal insulation in exterior wall is the best; (2) the effect of insulation material type on total annual load tends to be the same as the insulation thickness is increased and stabilizes after the energy savings rate reaches 20%; (3) the selection of facing materials with low solar radiation absorption coefficients for exterior wall and roof has a much higher impact on cooling loads than on heating loads; (4) the suitable range of the heat transfer coefficient of the exterior window is 2.5 ~ 3.5, and the solar heat gain coefficient is 0.1 ~ 0.5; (5) using the optimization scheme can be saved by 18% of the heating load, 33% of the cooling load, and 28% of the total load compared to the status quo. The research results can provide a theoretical basis and data reference for energy-saving renovation of educational buildings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044008PMC
http://dx.doi.org/10.1038/s41598-025-00045-yDOI Listing

Publication Analysis

Top Keywords

exterior envelope
12
optimization scheme
12
thermal performance
8
university teaching-office
8
teaching-office buildings
8
characteristics university
8
energy-saving optimization
8
actual characteristics
8
university buildings
8
exterior wall
8

Similar Publications

Bacteria are subject to a substantial concentration differential of osmolytes between the interior and exterior of the cell, resulting in turgor pressure. Failure to mechanically balance this turgor pressure causes cells to burst. Here, using microfluidics, imaging, biochemistry and mathematical modelling, we analysed how Escherichia coli cells with structural mutations in the envelope respond to hypoosmotic shocks.

View Article and Find Full Text PDF

It is very different from that of ordinary buildings due to the unique operational characteristics of university teaching-office buildings, and the energy-saving potential is huge, among them, the building's exterior envelope is an important factor in its energy loss. It is an important basis for building energy conservation to explore the influence of the thermal parameter of the building exterior envelope on energy consumption from the perspective of thermal theory. Meanwhile, most of the buildings are old in university, limited by the actual conditions, studying the energy-saving optimization scheme from the main influencing factors and actual characteristics is a prerequisite for achieving high efficiency and energy saving.

View Article and Find Full Text PDF

Study on energy retrofits for rural residential envelopes in Northwest China.

Sci Rep

April 2025

Department of Civil and Construction Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China.

Rural dwellings in Northwest China are typically self-built, lack energy-saving measures, and suffer from high energy consumption and poor thermal performance. Retrofitting building envelopes is a key strategy to improve energy efficiency and reduce carbon emissions. However, most existing studies focus on single-factor retrofits and single-objective evaluations, limiting their comprehensiveness and practical application.

View Article and Find Full Text PDF

Structural model of a bacterial focal adhesion complex.

Commun Biol

January 2025

Laboratoire de Chimie Bactérienne (LCB) Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université-CNRS, UMR 7283, Marseille, France.

Cell movement on surfaces relies on focal adhesion complexes (FAs), which connect cytoskeletal motors to the extracellular matrix to produce traction forces. The soil bacterium Myxococcus xanthus uses a bacterial FA (bFA), for surface movement and predation. The bFA system, known as Agl-Glt, is a complex network of at least 17 proteins spanning the cell envelope.

View Article and Find Full Text PDF

Unlabelled: The Gram staining method differentiates bacteria based on their cell envelope structure, with the monoderm and diderm cell envelope types traditionally being synonymous with Gram-positive and Gram-negative stain results, respectively. Monoderms have a single phospholipid membrane surrounded by a thick layer of peptidoglycan, while diderms have a lipopolysaccharide outer membrane exterior to a thin peptidoglycan layer. The (formerly ) phylum has members with both cell wall types, and recent phylogenetic analyses have shown that monoderm evolved from diderm ancestors on multiple occasions.

View Article and Find Full Text PDF