98%
921
2 minutes
20
Drought has become an important environmental stress limiting the growth and development of Camellia sinensis due to its moisture-loving and temperature-tolerant nature. ABA-response element binding factor (ABFs) is a key transcriptional regulator in the ABA signaling pathway that regulates plant responses to hormones and adversity. However, their roles and regulatory mechanisms in tea tree remain unknown. To investigate the drought response in Camellia sinensis, drought-sensitive (Fuyun No.6, FY) and drought-tolerant (Taicha No.12, TC) tea cultivars were treated with exogenous PEG and ABA and subjected to non-targeted metabolomics by Ultra Performance Liquid Chromatography-Electrospray Ionization-Triple Quadrupole tandem Mass Spectrometry (UPLC/ESI-Q TRAP-MS/MS). The bioactive carbohydrates galactinol and raffinose were identified as potential drought regulators. Analysis of transcriptomics data identified potential drought tolerant target genes, namely CsGolS1/2, encoding galactinol synthases, CsRaf6, a raffinose synthase, and CsABF8, a transcriptional regulator in the ABA-response element binding factor family. The tea CsSnRK2.8-CsABF8-CsGolS1/CsGolS2/CsRaf6 regulatory module induced in response to drought stress was constructed using multiple molecular validation tools. This preliminary analysis of the molecular mechanism by which CsABF8, a regulator on the ABA signaling pathway, mediates the differences in drought tolerance in different tea cultivars provides a theoretical basis for the selection and breeding of drought-resistant varieties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.143521 | DOI Listing |
iScience
September 2025
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.
is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
Abscisic acid (ABA) and calcium respectively work as crucial plant hormones and second signalling molecules in the regulation of fruit development and quality formation, including the sugar content and flavour quality. However, the regulatory mechanisms of fruit sugar accumulation arising from the interaction between ABA and calcium have not yet been fully elucidated. Here, we show that the application of ABA or calcium enhances sugar accumulation in sweet orange (Citrus sinensis) fruit, accompanied by upregulation of the expression level of tonoplast sugar transporter 2 (CsTST2), which mediates the transport of sugars into the vacuole.
View Article and Find Full Text PDFPerspect Behav Sci
September 2025
Ohio State University Wexner Medical Center, Columbus, OH USA.
In recent years, public concerns about applied behavior analysis (ABA) have intensified. This article argues that foundational principles of ABA require behavior analysts to take seriously these concerns and actively work to improve our practices. We provide an overview of ongoing reform efforts and examine how these efforts have led to the emergence of distinct brands within the field.
View Article and Find Full Text PDF