98%
921
2 minutes
20
Low-noise microwave oscillators are cornerstones for wireless communication, radar and clocks. The employment and optimization of optical frequency combs have enabled photonic microwave synthesizers with unrivalled noise performance and bandwidth breaking the bottleneck of those electronic counterparts. Emerging interest is to use chip-based Kerr frequency combs, namely microcombs. Today microcombs built on photonic integrated circuits feature small size, weight and power consumption, and can be manufactured to oscillate at any frequency ranging from microwave to millimeter-wave band. A monolithic microcomb-based microwave oscillator requires integration of lasers, photodetectors and nonlinear microresonators on a common substrate, which however has still remained elusive. Here, we demonstrate the first, fully hybrid-integrated, microcomb-based microwave oscillator at 10.7 GHz. The chip device, powered by a customized microelectronic circuit, leverages hybrid integration of a high-power DFB laser, a silicon nitride microresonator of a quality factor exceeding 25 × 10, and a high-speed photodetector chip of 110 GHz bandwidth (3 dB) and 0.3 A/W responsivity. Each component represents the state of the art of its own class, yet also allows large-volume manufacturing with low cost using established CMOS and III-V foundries. The hybrid chip outputs an ultralow-noise laser of 6.9 Hz intrinsic linewidth, a coherent microcomb of 10.7 GHz repetition rate, and a 10.7 GHz microwave carrier of 6.3 mHz linewidth - all the three functions in one entity occupying a footprint of only 76 mm. Furthermore, harnessing the nonlinear laser-microresonator interaction, we observe and maneuver a unique noise-quenching dynamics within discrete microcomb states, which offers immunity to laser current noise, suppression of microwave phase noise by more than 20 dB, and improvement of microwave power by up to 10 dB. The ultimate microwave phase noise reaches -75/-105/-130 dBc/Hz at 1/10/100 kHz Fourier offset frequency. Our results can reinvigorate our information society for communication, sensing, imaging, timing and precision measurement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041566 | PMC |
http://dx.doi.org/10.1038/s41377-025-01795-0 | DOI Listing |
Nature
September 2025
State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, China.
The forthcoming sixth-generation and beyond wireless networks are poised to operate across an expansive frequency range-from microwave, millimetre wave to terahertz bands-to support ubiquitous connectivity in diverse application scenarios. This necessitates a one-size-fits-all hardware solution that can be adaptively reconfigured within this wide spectrum to support full-band coverage and dynamic spectrum management. However, existing electrical or photonic-assisted solutions face a lot of challenges in meeting this demand because of the limited bandwidths of the devices and the intrinsically rigid nature of system architectures.
View Article and Find Full Text PDFRep Prog Phys
August 2025
Universitat de València, c/ Dr. Moliner, 50, Valencia, 46010, SPAIN.
As one of the main pillars of quantum technologies, quantum metrology aims to improve measurement precision using techniques from quantum information. The two main strategies to achieve this are the preparation of nonclassical states and the design of optimized measurement observables. We discuss precision limits and optimal strategies in quantum metrology and sensing with a single mode of quantum continuous variables.
View Article and Find Full Text PDFA controllable frequency-hopping (FH) optoelectronic oscillator (OEO) based on active time-domain mode-locking (TDML) is proposed and experimentally demonstrated. In the proposed FH OEO, a dual-passband microwave photonic filter (MPF) based on phase-modulation-to-intensity-modulation (PM-IM) conversion is implemented using two laser diodes (LDs), a phase modulator, a micro-disk resonator, and a photodiode. Using two synchronized electrical control signals, the two LDs are intensity modulated to achieve the controllable two sub-passbands of the dual-passband MPF.
View Article and Find Full Text PDFUltra-low-phase-noise photonic microwave generation and high-precision laser frequency determination are critical for advanced applications, such as radar, communication, and spectroscopy. Here, we demonstrate a monolithic nonplanar ring oscillator dual-frequency laser (NPRO-DFL) at 1064 nm that simultaneously generates ultra-stable photonic microwaves and enables sub-MHz laser frequency readout. By actively phase-locking the laser intracavity dual-frequency beat signal (equal to cavity free spectral range) to an ultra-stable oscillator via piezo control, we suppress the phase noise of the 5.
View Article and Find Full Text PDFNat Commun
August 2025
MIT Lincoln Laboratory, Lexington, MA, USA.
Photonically-synthesized microwave signals have surpassed the phase-noise performance achievable by traditional means of RF signal generation. However, for microwave-photonic oscillators to truly replace their RF counterparts, this phase-noise advantage must also be realizable when operating outside of a laboratory. Oscillators are known to be notoriously vibration sensitive, with both traditional RF and optical oscillators degrading sharply in all but the most stationary of environments.
View Article and Find Full Text PDF