Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoplastic particles and their additives are increasingly present in the food chain, interacting with biomacromolecules with not yet known consequences. A protein corona forms around the particles in these usually complex matrices, primarily with a first contact at surface-active proteins. However, systematic studies on the interactions between the particles and proteins -especially regarding protein affinity and structural changes due to surface properties like polarity - are limited. It is also unclear whether the protein corona can "mask" the particles, mimic protein properties, and induce cytotoxic effects when internalized by mammalian cells. This study aimed at investigating the physicochemical properties of model particle-protein complexes, the structural changes of adsorbed proteins, and their effects on Caco-2 cells. Whey protein β-lactoglobulin (β-Lg) was used as a well-characterized model protein and studied in a mixture with nanoparticles of varying polarity, specifically silica, polylactic acid (PLA), and polyethylene terephthalate (PET). The physicochemical analyses included measurements of the hydrodynamic diameter and the zeta potential, while the protein conformational changes were analyzed using Fourier-transform-infrared spectroscopy (FTIR) and intrinsic fluorescence. Cellular uptake in Caco-2 cells was assessed through flow cytometry, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, and cellular impedance was analyzed with xCELLigence® technology. The results indicated that β-Lg had the highest affinity for hydrophilic silica particles, forming silica-β-Lg complexes and large aggregates through electrostatic interactions. The affinity decreased for PLA and was lowest for hydrophobic PET, which formed smaller complexes. Adsorption onto silica caused partial unfolding and refolding of β-Lg. The silica-β-Lg complexes were internalized by Caco-2 cells, impairing cell proliferation. In contrast, PLA- and PET-protein complexes were not internalized, though PLA complexes slightly reduced cell viability. This study enhances our understanding of protein adsorption on nanoparticles and its potential biological effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2025.114702DOI Listing

Publication Analysis

Top Keywords

caco-2 cells
12
particle-protein complexes
8
silica polylactic
8
polylactic acid
8
polyethylene terephthalate
8
protein
8
protein corona
8
structural changes
8
cell viability
8
silica-β-lg complexes
8

Similar Publications

Preparation, characterization, and antioxidant activity of bovine bone peptide-calcium chelate against oxidative stress-induced injury in Caco-2 cells.

Bioorg Chem

September 2025

Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133002, PR China; Department of Food Science and Technology, College of Agricultural, Yanbian Univ

In this study, bovine peptide‑calcium chelates (BBP-Ca) were prepared via enzymatic hydrolysis to generate peptides and fermentation to obtain soluble calcium ions, which were then chelated together. The structural characteristics of BBP-Ca were comprehensively analyzed using FTIR, SEM, and UV spectroscopy. Additionally, its antioxidant capacity was evaluated by examining its protective effects against oxidative stress-induced damage in Caco-2 cells.

View Article and Find Full Text PDF

Praeruptorin A alleviates DSS-induced acute ulcerative colitis in mice via the STAT-1/-3 pathway.

Am J Physiol Regul Integr Comp Physiol

September 2025

Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Ulcerative colitis (UC) is a serious inflammatory bowel disease with a significantly increasing incidence globally. Current treatment options often exhibit unstable efficacy and notable side effects, making the exploration of alternative therapies particularly important. Peucedanum praeruptorum Dunn, a traditional Chinese medicine, contains various bioactive compounds, among which praeruptorin A (PA) has garnered attention for its anti-inflammatory potential.

View Article and Find Full Text PDF

This study comprehensively analyses two new ruthenium(III) complexes, [RuCl(Nic)][(CH)NH]DMF, 1, and [RuCl(3-HPA)][3-HHPA](EtOH), 2, (where Nic = nicotinic acid (vitamin B3), 3-HPA = anion of a 3-hydroxypicolinic acid), as potential antimicrobial agents, highlighting their physicochemical properties, nanoparticle formation, and cytotoxic activity. The complexes were fully characterised by a single crystal X-ray diffraction technique, Fourier-transform infrared, energy-dispersive X-ray, and electron paramagnetic resonance spectroscopies. The synthesis of micro- and nanoparticles (NPs) of these complexes was performed using the liquid anti-solvent crystallisation method.

View Article and Find Full Text PDF

This study aims to assess whether endometriosis causally increases the risk of IBD through Mendelian randomisation (MR) analysis and to elucidate potential mechanisms using in vitro experiments. A two-sample Mendelian randomisation (MR) analysis was conducted using genome-wide association study datasets for endometriosis and IBD, including ulcerative colitis and Crohn's disease. Causal inference was assessed using inverse variance weighting, MR-Egger, and weighted median methods, with MR-PRESSO used to detect horizontal pleiotropy.

View Article and Find Full Text PDF

Flammulina velutipes is a major edible fungus with abundant yield and mature industrial production technology. Its main functional component, Flammulina velutipes polysaccharide, has huge development and utilization value. In light of the current uncertainty regarding the mechanisms by which Flammulina velutipes polysaccharides prevent colonic cell pyroptosis, the mechanisms of ultrasound-extracted Flammulina velutipes polysaccharide (FVPU2) in inhibiting colonic cell pyroptosis in mice were investigated, and compared with Flammulina velutipes polysaccharide extracted via hot water extraction (FVPH2).

View Article and Find Full Text PDF