Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The identification of B-cell epitopes (BCEs) is fundamental to advancing epitope-based vaccine design, therapeutic antibody development, and diagnostics, such as in neglected tropical diseases caused by parasitic pathogens. However, the structural complexity of parasite antigens and the high cost of experimental validation present certain challenges. Advances in Artificial Intelligence (AI)-driven protein engineering, particularly through machine learning and deep learning, offer efficient solutions to enhance prediction accuracy and reduce experimental costs.

Methodology/principal Findings: Here, we present deepBCE-Parasite, a Transformer-based deep learning model designed to predict linear BCEs from peptide sequences. By leveraging a state-of-the-art self-attention mechanism, the model achieved remarkable predictive performance, achieving an accuracy of approximately 81% and an AUC of 0.90 in both 10-fold cross-validation and independent testing. Comparative analyses against 12 handcrafted features and four conventional machine learning algorithms (GNB, SVM, RF, and LGBM) highlighted the superior predictive power of the model. As a case study, deepBCE-Parasite predicted eight BCEs from the leucine aminopeptidase (LAP) protein in Fasciola hepatica proteomic data. Dot-blot immunoassays confirmed the specific binding of seven synthetic peptides to positive sera, validating their IgG reactivity and demonstrating the model's efficacy in BCE prediction.

Conclusions/significance: deepBCE-Parasite demonstrates excellent performance in predicting BCEs across diverse parasitic pathogens, offering a valuable tool for advancing the design of epitope-based vaccines, antibodies, and diagnostic applications in parasitology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064019PMC
http://dx.doi.org/10.1371/journal.pntd.0012985DOI Listing

Publication Analysis

Top Keywords

deep learning
12
parasitic pathogens
12
transformer-based deep
8
fasciola hepatica
8
machine learning
8
learning
5
learning enables
4
enables improved
4
improved b-cell
4
b-cell epitope
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF