HFKG-RFE: An algorithm for heterogeneous federated knowledge graph.

PLoS One

School of Computer Science and Engineering, Changchun University of Technology, Changchun, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Federated learning ensures that data can be trained globally across clients without leaving the local environment, making it suitable for fields involving privacy data such as healthcare and finance. The knowledge graph technology provides a way to express the knowledge of the Internet into a form more similar to the human cognitive world. The training of the knowledge graph embedding model is similar to that of many models, which requires a large amount of data for learning to achieve the purpose of model development. The security of data has always been a focus of public attention, and driven by this situation, knowledge graphs have begun to be combined with federated learning. However, the combination of the two often faces the problem of federated data statistical heterogeneity, which can affect the performance of the training model. Therefore, An Algorithm for Heterogeneous Federated Knowledge Graph (HFKG) is proposed to solve this problem by limiting model drift through comparative learning. In addition, during the training process, it was found that both the server aggregation algorithm and the client knowledge graph embedding model performance can affect the overall performance of the algorithm.Therefore, a new server aggregation algorithm and knowledge graph embedding model RFE are proposed. This paper uses the DDB14, WN18RR, and NELL datasets and two methods of dataset partitioning to construct data heterogeneity scenarios for extensive experiments. The experimental results show a stable improvement, proving the effectiveness of the federated knowledge graph embedding aggregation algorithm HFKG-RFE, the knowledge graph embedding model RFE and the federated knowledge graph relationship embedding aggregation algorithm HFKG-RFE formed by the combination of the two.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040263PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315782PLOS

Publication Analysis

Top Keywords

knowledge graph
36
graph embedding
20
federated knowledge
16
embedding model
16
aggregation algorithm
16
knowledge
11
graph
9
algorithm heterogeneous
8
heterogeneous federated
8
federated learning
8

Similar Publications

The effect of recurrent seizures on the gradual deterioration of the white matter structural network and the potential molecular mechanisms that underlie the baseline and longitudinal changes in network topology in temporal lobe epilepsy (TLE) remain unclear. Therefore, we used diffusion tensor imaging (DTI) scans and neuropsychiatric assessments for 28 patients with unilateral TLE at baseline and follow-up, and for 28 healthy controls (HC). The topological properties of the structural network were calculated using graph theoretical analyses.

View Article and Find Full Text PDF

Objective: To analyze the hotspots and frontiers in the field of subarachnoid hemorrhage using the bibliometrics method and providing references for academic research.

Methods: All published studies related to subarachnoid hemorrhage published in the Web of Science core database from 1 January 2016 to 25 September 2021 were retrospectively identified using VOSviewer and CiteSpace software. Visualization VOSviewer and CiteSpace software were used to perform statistical and cluster analyses on authors, countries, institutions, keywords, and co-cited documents.

View Article and Find Full Text PDF

The tumor microenvironment is a dynamic eco system where cellular interactions drive cancer progression. However, inferring cell-cell communication from non-spatial scRNA-seq data remains challenging due to incomplete li gand-receptor databases and noisy cell type annotations. H ere, we propose scGraphDap, a graph neural network frame work that integrates functional state pseudo-labels and graph structure learning to improve both cell type annotation an d CCC inference.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

Large language models (LLMs) have demonstrated transformative potential for materials discovery in condensed matter systems, but their full utility requires both broader application scenarios and integration with ab initio crystal structure prediction (CSP), density functional theory (DFT) methods and domain knowledge to benefit future inverse material design. Here, we develop an integrated computational framework combining language model-guided materials screening with genetic algorithm (GA) and graph neural network (GNN)-based CSP methods to predict new photovoltaic material. This LLM + CSP + DFT approach successfully identifies a previously overlooked oxide material with unexpected photovoltaic potential.

View Article and Find Full Text PDF