Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Novel view synthesis for dynamic 3D scenes poses a significant challenge. Many notable efforts use NeRF-based approaches to address this task and yield impressive results. However, these methods rely heavily on sufficient motion parallax in the input images or videos. When the camera motion range becomes limited or even stationary (i.e., small camera motion), existing methods encounter two primary challenges: incorrect representation of scene geometry and inaccurate estimation of camera parameters. These challenges make prior methods struggle to produce satisfactory results or even become ineffective. To address the first challenge, we propose a novel Distribution-based Depth Regularization (DDR) that ensures the rendering weight distribution to align with the true distribution. Specifically, unlike previous methods that use depth loss to calculate the error of the expectation, we calculate the expectation of the error by using Gumbel-softmax to differentiably sample points from discrete rendering weight distribution. Additionally, we introduce constraints that enforce the volume density of spatial points before the object boundary along the ray to be near zero, ensuring that our model learns the correct geometry of the scene. To demystify the DDR, we further propose a visualization tool that enables observing the scene geometry representation at the rendering weight level. For the second challenge, we incorporate camera parameter learning during training to enhance the robustness of our model to camera parameters. We conduct extensive experiments to demonstrate the effectiveness of our approach in representing scenes with small camera motion input, and our results compare favorably to state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2025.3565642DOI Listing

Publication Analysis

Top Keywords

camera motion
16
small camera
12
rendering weight
12
view synthesis
8
scene geometry
8
camera parameters
8
weight distribution
8
camera
7
motion
5
methods
5

Similar Publications

Background: Velocity-Based Training (VBT) is an emerging method in resistance training for objectively prescribing and monitoring training intensity and neuromuscular function. Given its growing popularity, assessing the validity and reliability of VBT devices is critical for strength and conditioning coaches.

Objective: The primary purpose of this review was twofold: (1) to identify and address methodological gaps in current assessments of VBT device validity and reliability, and (2) to propose and apply a novel, multi-layered, criterion-based framework-developed in collaboration with statisticians and domain experts-for evaluating these devices.

View Article and Find Full Text PDF

Effect of forefoot strike and toe-out running on hip contact forces: A musculoskeletal modelling-based study.

J Biomech

September 2025

Human Movement Laboratory, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia; Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.

Hip osteoarthritis (OA) is an increasingly significant public health concern, contributing to substantial economic and societal burden worldwide. Emerging evidence suggests that running may promote cartilage health through optimal joint loading. However, it remains unclear how modifications to running posture, such as altering footstrike patterns or adjusting foot progression angles, affect hip contact forces (HCF).

View Article and Find Full Text PDF

Background: Effects of ground surface and hoof angles on equine cervical and thoracolumbosacral kinematics are poorly understood. However, the equine cervical and thoracolumbosacral areas present frequent lesions and he management of factors that might improve treatment and rehabilitation outcomes, such as ground surface and hoof angles, requires more investigation.

Aims: Our objectives were to determine the influence of ground surface (asphalt versus sand) and a 3 degrees hind toe or heel elevation on cervical and thoracolumbosacral kinematics during walking and trotting.

View Article and Find Full Text PDF

This study evaluates the accuracy of single camera markerless motion capture (SCMoCap) using Microsoft's Azure Kinect, enhanced with inverse kinematics (IK) via OpenSim, for upper limb movement analysis. Twelve healthy adults performed ten upper-limb tasks, recorded simultaneously by OptiTrack (marker-based) and Azure Kinect (markerless) from frontal and sagittal views. Joint angles were calculated using two methods: (1) direct kinematics based on body coordinate frames and (2) inverse kinematics using OpenSim's IK tool with anatomical keypoints.

View Article and Find Full Text PDF

The Mobile Constant, a Self-Reported Method for Shoulder Function Evaluation: Development and Validation Study.

J Med Internet Res

September 2025

Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Background: Shoulder pain is a highly prevalent musculoskeletal disorder that severely compromises patients' quality of life. The Constant-Murley Scale (CMS) is a well-established method for shoulder function evaluation. However, the necessity of clinician involvement constrains its utility in continuous monitoring.

View Article and Find Full Text PDF