Astronaut dose coefficients calculated using GEANT4 and comparison with ICRP123.

Radiat Environ Biophys

Particle Physics Research Center, Shandong Institute of Advanced Technology, 1501 Panlong Road, Jinan, 250103, Shandong, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluence-to-dose conversion coefficients are fundamental ingredients to calculate astronaut radiation dose in space. For this purpose, the conversion coefficients for isotropic radiation provided by the International Commission on Radiological Protection in Publication 123 (ICRP123) are widely used. Understanding the uncertainties in these coefficients is important for a precise calculation of radiation dose. In this work, we present a systematic study of unshielded dose coefficients calculated by means of the GEANT4 Monte Carlo simulation toolkit and the human voxel phantoms defined in ICRP Publication 110. Four GEANT4 physics lists, featured with two variations of electromagnetic and two variations of hadronic interaction models, were used in the study. Absorbed dose and dose equivalent coefficients with both the ICRP60 and NASA quality factors were calculated, for individual cosmic nuclei with charge from Z 1 to Z 28 and a kinetic energy range from 1 MeV/n to 100 GeV/n. The effective dose equivalent rates in free space at 1 AU were then calculated for each set of dose coefficients. The four effective dose equivalent rates calculated with each physics list agreed within , and on average they were larger than the ICRP123 results by and using the ICRP60 and the NASA quality factor, respectively. These results shed light on the systematic uncertainty of astronaut radiation exposure calculation, particularly from the physics interaction models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350601PMC
http://dx.doi.org/10.1007/s00411-025-01126-2DOI Listing

Publication Analysis

Top Keywords

dose coefficients
12
dose equivalent
12
coefficients calculated
8
calculated geant4
8
conversion coefficients
8
astronaut radiation
8
dose
8
radiation dose
8
interaction models
8
icrp60 nasa
8

Similar Publications

Purpose: Accurate prediction of human clearance (CL) is essential in early drug development. Single Species Scaling (SSS) using rat pharmacokinetic (PK) data, particularly with unbound plasma fraction (f), is widely used. However, its accuracy declines for compounds with extremely low f, and no systematic method has addressed this limitation.

View Article and Find Full Text PDF

Metformin attenuates coal dust nanoparticle-induced pulmonary fibrosis by modulating inflammation and epithelial-mesenchymal transition.

Int Immunopharmacol

September 2025

The First Hospital of Anhui University of Science and Technology, Huainan 232000, China; Bengbu Medical University, Bengbu 233030, China. Electronic address:

Coal worker pneumoconiosis is an occupational pulmonary fibrosis (PF) caused by prolonged exposure to respirable coal dust (CD), with limited therapeutic options. Here, we explored the antifibrotic effects of metformin (Met) in CD-nanoparticle (CD-NP)-induced PF, focusing on its preventive and therapeutic potential. In vivo, Met was administered at different doses (low: 31.

View Article and Find Full Text PDF

A Monte Carlo Method for Estimating Secondary Photon Yields from Beta-emitting Radionuclides Concentrated in Environmental Soil.

Health Phys

September 2025

Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.

View Article and Find Full Text PDF

Implementation of intelligent All-in-one technology in rectal cancer radiotherapy: A retrospective study on automation efficiency and safety.

J Appl Clin Med Phys

September 2025

Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

Purpose: This study aims to assess percentage of automated AIO plans that met clinical treatment standards of radiotherapy plans generated by the fully automated All-in-one (AIO) process.

Methods: The study involved 117 rectal cancer patients who underwent AIO treatment. Fully automated regions of interest (ROI) and treatment plans were developed without manual intervention, comparing them to manually generated plans used in clinical practice.

View Article and Find Full Text PDF

Diagnostic reference levels (DRLs) are essential for optimizing radiologic practices and ensuring patient safety. This study aimed to establish typical DRLs for nuclear medicine (NM) procedures performed at a Brazilian public university hospital. A retrospective analysis of 2,609 patient records from 13 routine NM procedures was conducted.

View Article and Find Full Text PDF