A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Zein and Trimethyl Chitosan-Based Core-Shell Nanoparticles for Quercetin Oral Delivery to Enhance Absorption by Paracellular Pathway in Obesity Mice. | LitMetric

Zein and Trimethyl Chitosan-Based Core-Shell Nanoparticles for Quercetin Oral Delivery to Enhance Absorption by Paracellular Pathway in Obesity Mice.

Biomater Res

National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quercetin as a flavonoid polyphenol in nature has shown great anti-obesity effects. Due to its poor stability in chemical structure and low intestinal absorption, the in vivo bioavailability of quercetin is considered to be the main challenge for applications. To achieve the oral quercetin administration, chitosan was successfully trimethylated (TMC) to coat the quercetin-loaded zein nanoparticles (Zein-Q), which were designed as the core-shell structure for enhancing the intestinal absorption in this study. TMC-Zein-Q was demonstrated to protect quercetin from degradation and showed the sustained-release effect in an in vitro drug release experiment. The nanoparticles were found to reversibly open tight junctions between intestinal epithelial cells and help to increase quercetin uptake via the paracellular pathway in Caco-2 cells. In addition, the delivery system also showed stronger intestinal permeability and mucoadhesion in vivo, which improved the bioavailability of quercetin in cellular and animal experiments. After 10 weeks of intervention, TMC-Zein-Q could effectively suppress weight gain, improve serum lipid levels, and ameliorate hepatic steatosis and glucose tolerance in high-fat diet (HFD) mice by mediating the AMPK pathway. Consequently, this work successfully constructed TMC-Zein-Q for oral quercetin delivery, providing a novel and feasible strategy for the treatment of obesity via the oral route.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034925PMC
http://dx.doi.org/10.34133/bmr.0193DOI Listing

Publication Analysis

Top Keywords

quercetin
8
paracellular pathway
8
intestinal absorption
8
bioavailability quercetin
8
oral quercetin
8
zein trimethyl
4
trimethyl chitosan-based
4
chitosan-based core-shell
4
core-shell nanoparticles
4
nanoparticles quercetin
4

Similar Publications