Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Due to the differences in size, shape, and location of brain tumors, brain tumor segmentation differs greatly from that of other organs. The purpose of brain tumor segmentation is to accurately locate and segment tumors from MRI images to assist doctors in diagnosis, treatment planning and surgical navigation. NSNP-like convolutional model is a new neural-like convolutional model inspired by nonlinear spiking mechanism of nonlinear spiking neural P (NSNP) systems. Therefore, this paper proposes a global-local feature fusion network based on NSNP-like convolutional model for MRI brain tumor segmentation. To this end, we have designed three characteristic modules that take full advantage of the NSNP-like convolution model: dilated SNP module (DSNP), multi-path dilated SNP pooling module (MDSP) and Poolformer module. The DSNP and MDSP modules are employed to construct the encoders. These modules help address the issue of feature loss and enable the fusion of more high-level features. On the other hand, the Poolformer module is used in the decoder. It processes features that contain global context information and facilitates the interaction between local and global features. In addition, channel spatial attention (CSA) module is designed at the skip connection between encoder and decoder to establish the long-range dependence between the same layers, thereby enhancing the relationship between channels and making the model have global modeling capabilities. In the experiments, our model achieves Dice coefficients of 85.71[Formula: see text], 92.32[Formula: see text], 87.75[Formula: see text] for ET, WT, and TC, respectively, on the N-BraTS2021 dataset. Moreover, our model achieves Dice coefficients of 83.91[Formula: see text], 91.96[Formula: see text], 90.14[Formula: see text] and 85.05[Formula: see text], 92.30[Formula: see text], 90.31[Formula: see text] on the BraTS2018 and BraTS2019 datasets respectively. Experimental results also indicate that our model not only achieves good brain tumor segmentation performance, but also has good generalization ability. The code is already available on GitHub: https://github.com/Li-JJ-1/NSNP-brain-tumor-segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065725500364DOI Listing

Publication Analysis

Top Keywords

brain tumor
20
tumor segmentation
20
convolutional model
16
nonlinear spiking
12
model achieves
12
model
9
text]
9
global-local feature
8
feature fusion
8
fusion network
8

Similar Publications

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Manipulating Zika virus RNA tertiary structure for developing tissue-specific attenuated vaccines.

EMBO Mol Med

September 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.

Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.

View Article and Find Full Text PDF

Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.

View Article and Find Full Text PDF

Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.

View Article and Find Full Text PDF

Deep learning approaches have improved disease diagnosis efficiency. However, AI-based decision systems lack sufficient transparency and interpretability. This study aims to enhance the explainability and training performance of deep learning models using explainable artificial intelligence (XAI) techniques for brain tumor detection.

View Article and Find Full Text PDF