Crystal Facet Engineering Modulated Electron Transfer Mechanisms: A Self-Powered Photoelectrochemical Sensing Platform for Noninvasive Detection of Uric Acid.

Anal Chem

Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Crystal facet engineering is a pivotal strategy to design high-performance photoelectrodes and suppress electron and hole complexation, thus enhancing photoelectrochemical (PEC) activity through carrier enrichment at specific crystal facets. However, there is still a lack of systematic resolution on the intrinsic principles of crystal facet tuning energy band structure and the specific adsorption of signaling molecules. In this work, a multidimensional synergistic optimization strategy was proposed to achieve precise prediction and targeted crystal facet design of photoelectrodes by establishing a quantitative structure-activity relationship (QSAR) model of "crystal configuration-molecular recognition-carrier transport". A three-dimensional hierarchical TiO nanoflower (3D HTNF) photoelectrode dominated by the {110} facet exhibited a significant positive photocurrent toward uric acid (UA). Integrated with a microelectromechanical system (MEMS), a miniaturized self-powered PEC biosensor provided an innovative solution for high-throughput, noninvasive UA monitoring in saliva and displayed a linear range of 0.01-50 μM with a detection limit of 8.76 nM. In addition, the advantages of photoelectrodes in light harvesting, charge separation and migration, molecular adsorption, and surface reactions were verified by density functional theory (DFT) calculations to reveal the path selectivity and carrier transport mechanisms of the photo-oxidation reactions on specific crystal surfaces. This study elucidates the interplay mechanism of the crystal surface tuning energy band structure and the interfacial kinetics of response. The program can be extended to precisely detect biomarkers in complex biological matrices, promoting the leapfrog development of noninvasive health monitoring technology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5c01345DOI Listing

Publication Analysis

Top Keywords

crystal facet
16
facet engineering
8
uric acid
8
specific crystal
8
tuning energy
8
energy band
8
band structure
8
crystal
7
engineering modulated
4
modulated electron
4

Similar Publications

Polyethylene terephthalate (PET) glycolysis presents an effective solution to address plastic pollution while promoting the utilization of renewable resources. It is highly important to gain in-depth insights into the identification of the well-defined active sites and the structure-activity relationships in PET glycolysis. Herein, PW@UiO-67 with different exposed crystal facets, i.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.

View Article and Find Full Text PDF

Facet-dependent spatial charge separation in a metal-doped SrTiO photocatalyst with visible light utilization.

Chem Commun (Camb)

September 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Visible-light-responsive Rh/Sb co-doped SrTiO with engineered {100}/{110} facets (STO:RS(NaCl)) was synthesized flux-assisted crystallization. Facet-dependent spatial charge separation, driven by work function differences, enabled electrons and holes to migrate to the respective facets. This configuration tripled photocatalytic hydrogen evolution non-faceted STO:RS(w/o), overcoming the limitations of ultraviolet-only absorption and inefficient charge separation.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.

View Article and Find Full Text PDF

Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.

View Article and Find Full Text PDF