Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Laser ablation in liquid (LAL) is a reference technique for the synthesis of multicomponent non-equilibrium nanomaterials which have potentially disruptive properties in photonics, nanomedicine, and catalysis. Yet, ablation dynamics is poorly understood regarding the multielement matter and, therefore, the remarkable potential of LAL for controlling the local atomic structure of metastable nanophases remains largely unexploited. Here, the dynamics of LAL are investigated with non-equilibrium gold-iron nanoalloys generated in the presence of gas-evolving additives, which drive the formation of different nanostructures. With analytical electron microscopy, the structure in the different conditions is properly identified through complete segregation into oxide-metal heterostructures, precipitation of nanoclusters within the nanoalloys, or ordered solid solutions. To elucidate the unforeseen effects of the solutes on the atomic structure of nanoalloys, the early and full dynamics of LAL is investigated with time-resolved experiments, leading to the pivotal evidence that alloying of metastable compounds with different chemical reactivity is favored by decreasing the pressure of the shockwave front. The resulting picture indicates LAL with gas-evolving additives as a strategy for molding the atomic structure of non-equilibrium nanoalloys, opening the way to the development of a library of advanced nanomaterials otherwise inaccessible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140356PMC
http://dx.doi.org/10.1002/advs.202416035DOI Listing

Publication Analysis

Top Keywords

atomic structure
16
gas-evolving additives
12
laser ablation
8
ablation liquid
8
molding atomic
8
dynamics lal
8
lal investigated
8
structure
5
nanoalloys
5
lal
5

Similar Publications

Structure, function and assembly of nuclear pore complexes.

Nat Rev Mol Cell Biol

September 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.

View Article and Find Full Text PDF

In fluid catalytic cracking (FCC) processes, vanadium is a primary harmful feedstock contaminant that deactivates catalysts by forming vanadate species which corrode the zeolite framework and damage catalyst structure. Introducing vanadium capture agents is an effective way to enhance the catalytic performance, but the mechanism of the interaction has not yet been fully understood. This study demonstrates that lanthanum-based additives significantly improve vanadium resistance in FCC catalysts.

View Article and Find Full Text PDF

Encapsulation of non-noble bimetallic nanoparticles within a zeolite framework can improve the stability and accessibility of active sites, but the single microporous structure and poor metal stability decreased the catalytic performance of the catalyst. Here, 3D hierarchical ZSM-5 zeolite encapsulated NiCo nanoparticles (NiCo@3DHZ5) were synthesized by Bottom-up confined steam-assisted crystallization (SAC) one-pot hydrothermal method and applied to the hydrodeoxygenation of vanillin. A series of characterizations showed that highly stable alloyed NiCo nanoparticles were encapsulated in a framework of 3DHZ5, the strong metal-zeolite interactions resulted in highly dispersed NiCo nano-alloys facilitated hydrogen adsorption and spillover of active hydrogen atoms, and the 3D hierarchical structure promoted oxygenated substrate diffusion, the synergy interaction between the alloy particles confined in the 3DHZ5 pores and the acidic sites on the zeolite surface promoted the selective conversion of vanillin.

View Article and Find Full Text PDF

Surface nanobubbles nucleated on rough hydrophilic steel exhibit topography-dependent shapes.

J Colloid Interface Sci

September 2025

State Key Laboratory of Hydro Science and Engineering, and Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:

Hypothesis: On highly cleaned planar surfaces submerged in highly cleaned water, flat surface nanobubbles with an angle of attachment of ∼15 are observed - never on engineering surfaces submerged in plain water, though here unidentified cavitation nuclei are always present and cause low tensile strength.

Experiments: In the present study, surface nanobubbles are generated by standard experimental techniques on a polished steel surface, and we find that the shape and the angles of attachment of the bubbles are influenced by the local substrate topography. These observations align with the theory of non-adsorbed liquid zones, which explains a surface nanobubble as a bubble with a skin of contamination molecules, which bond along the bubble rim at a contact angle of ∼14.

View Article and Find Full Text PDF

textcolorred This study reports the green synthesis, characterization, and radiation shielding performance of BaOBiO nanocomposites using Euphorbia tirucalli latex as a reducing agent. Structural analysis via PXRD confirmed distinct crystalline phases, and SEM revealed agglomerated nanoparticles below 500 nm. The UV-Vis spectra showed a wide optical bandgap of 3.

View Article and Find Full Text PDF