Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In order to meet the application requirements for high-precision and low-noise accelerometers in micro-vibration measurement and navigation fields, this paper presents the design and testing of an ultra-high-capacitance resolution capacitive readout circuit with attofarad-level precision. First, a differential charge amplifier circuit is employed for the first stage of capacitance detection. To suppress noise interference in the circuit, a frequency-domain modulation technique is utilized to mitigate low-frequency noise. Subsequently, a differential subtraction circuit is implemented to reduce common-mode noise. Additionally, an improved filtering circuit is designed to suppress noise interference in the final stage. The test results indicate that the designed circuit operates at a carrier frequency of 1 MHz, achieving a capacitance resolution of up to 0.103 aF/Hz1/2 and a noise floor of 25.6 μg/Hz1/2, thereby meeting the requirements for high-precision and low-noise capacitance detection in MEMS accelerometers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030812 | PMC |
http://dx.doi.org/10.3390/s25082461 | DOI Listing |