98%
921
2 minutes
20
The importance of sustainable polymers has increased greatly in the last years since most polymers are derived from non-renewable sources. Sustainable polymers (i.e., biopolymers) such as natural rubber (NR) are proposed as a solution for this concern. A comparative study between NR and deproteinized NR (DPNR) was carried out to elucidate the role of proteins on the network formation and degradation of peroxide cross-linked NR using time-domain NMR experiments. The H multiple-quantum (MQ) NMR experiments provided information on the cross-link density and its spatial distribution, while the actual fraction of non-coupled network defects was obtained by exploiting the Hahn echo approach measured on swollen samples. The results showed that proteins influenced the network formation during the vulcanization process of NR, leading to a higher number of non-elastic network defects and promoting the creation of additional cross-links with a broader spatial distribution. The formation of network heterogeneities in different length scales deeply influences the mechanical properties of NR samples. On the other hand, the proteins showed a pro-oxidant activity on the degradation behavior by accelerating the degradation process of peroxide cross-linked NR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030170 | PMC |
http://dx.doi.org/10.3390/polym17081063 | DOI Listing |
Front Immunol
September 2025
Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.
Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.
Congenital disorders of glycosylation (CDG) are a heterogeneous group of inherited metabolic diseases (IMD) characterized by defects in the synthesis and modification of glycoproteins and glycolipids. One of these disorders is ATP6AP1-CDG, a rare X-linked disease with approximately 30 cases reported so far. Symptoms associated with ATP6AP1-CDG include immunodeficiency, liver dysfunction, and neurological manifestations.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Department of Orthopedics I, Second Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.
Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. However, the biological role of mitochondrial metabolism (MM) in COPD remains poorly understood. This study aimed to explore the underlying mechanisms of MM in COPD using bioinformatics methods.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.
is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.
View Article and Find Full Text PDF