98%
921
2 minutes
20
Purpose: Anti-vascular endothelial growth factor (anti-VEGF) agents are the first-line treatment for retinal vein occlusion-related macular edema (RVO-ME). However, the availability of reliable radiomic markers for evaluating the effectiveness of these agents is currently limited. The aim of this study was to develop machine learning approaches to evaluate the post-therapeutic effect of anti-VEGF treatment based on optical coherence tomography (OCT) images.
Methods: A total of 152 patients diagnosed with RVO-ME who received at least one intravitreal injection of anti-VEGF were included in this study, as well as 81 patients as the external validation set. Pre-therapeutic B-scans of spectral-domain OCT images were collected and segmented using the Pyradiomics module within the 3D Slicer software platform. Radiomic features were extracted from the segmented images. We trained the logistic regression model and machine learning models using the selected features, and evaluated the performance of the three classifier models.
Results: In the back propagation neural network (BPNN) model, the area under the curve (AUC) of the training, test, and external validation sets were 0.977, 0.912, and 0.804, respectively. In the support vector machine (SVM) model, the AUC of the 3 sets were 0.916, 0.882, and 0.802. The OCT-omics scores indicated a high overall net benefit, as determined by decision curve analysis.
Conclusions: The machine learning models based on OCT technology developed here demonstrated a promising ability to prognose anti-VEGF therapeutic responses for RVO-ME. The utilization of machine learning provides a new promising approach to assessing radiomic markers in research related to RVO-ME, having a good prospect for the application of the using of precision medicine in ophthalmology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060074 | PMC |
http://dx.doi.org/10.1167/iovs.66.4.74 | DOI Listing |
JMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFJ Cataract Refract Surg
July 2025
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China.
Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.
Setting: West China Hospital of Sichuan University, China.
Design: Deep-learning study.
JMIR Med Inform
September 2025
College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.
Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.
View Article and Find Full Text PDFJMIR AI
September 2025
Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.
Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.
Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.
Methods: A systematic review was performed.