Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antibiotic resistance is an escalating global concern, necessitating the development of novel antibiotics with unique mechanisms of action, and preferably also with a lowered propensity for resistance development. Type-I Toxin-Antitoxin (TA) systems that are ubiquitous in bacterial genomes consist of a genetic toxin element encoding a hydrophobic peptide and an antitoxin element producing an sRNA that inhibits the toxin translation. Although the biological roles of these membrane-associated toxins remain incompletely understood, their inherent lethality upon overexpression suggests a potential as antimicrobial agents. In this study, we explore the ShoB toxin from the shoB-ohsC TA system in Escherichia coli (E. coli) as a basis for designing synthetic antimicrobial peptides for exogenous delivery. We demonstrate that ShoB-derived peptides can retain antimicrobial efficacy when modified into shorter, cationic analogs with enhanced solubility. Our most promising hits exhibit rapid bactericidal action and frequency of resistance within E. coli cultures indicate a limited tendency for resistance development. These findings highlight that type-I TA systems constitute a novel source of potential peptide-based antibiotics, thereby offering an alternative largely unexplored strategy to combat antibiotic-resistant bacterial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022103PMC
http://dx.doi.org/10.1038/s41598-025-98330-3DOI Listing

Publication Analysis

Top Keywords

synthetic antimicrobial
8
antimicrobial peptides
8
escherichia coli
8
shob toxin
8
resistance development
8
rational design
4
design synthetic
4
antimicrobial
4
peptides based
4
based escherichia
4

Similar Publications

Engineering and Functional Expression of the Type III Secretion System in : Enhancing Insecticidal Efficacy and Expanding T3SE Libraries.

J Agric Food Chem

September 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China.

Entomopathogenic nematode symbiotic bacteria (EPNB) enhance nematode insecticidal capacity through symbiosis. This study cloned the complete 32-kb type III secretion system (T3SS) gene cluster from TT01 using Red/ET recombineering and functionally expressed it in T3SS-deficient HN_xs01. Heterologous T3SS expression significantly enhanced HN_xs01 adhesion and invasion capabilities in CF-203 cells.

View Article and Find Full Text PDF

APD6: the antimicrobial peptide database is expanded to promote research and development by deploying an unprecedented information pipeline.

Nucleic Acids Res

September 2025

Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States.

The global antibiotic resistance issue constitutes a driving force for developing host defense antimicrobial peptides (AMPs) into a new generation of antibiotics. To facilitate this development, we report the antimicrobial peptide database version 6 (APD6) with (i) the consolidated database platform, (ii) the most comprehensive AMP information pipeline (AMPIP), and (iii) the expanded wheel of function. As of 18 March 2025, the APD6 platform housed records for 5188 peptides, including 3306 natural, 1380 synthetic, and 239 predicted AMPs with systematic classification schemes for each group.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.

View Article and Find Full Text PDF

Structurally unique halichonine B is promising for the design of pharmaceutical leads, while function-oriented optimization is unknown in agrochemical science. Our recent practical synthesis offers a great chance for the discovery of antimicrobial leads. "Linker plus replaceable substituents" is exerted, in which up to 9 unique linkers together with diverse substituents from a wide chemical space are investigated for optimization of the readily available drimanyl amine.

View Article and Find Full Text PDF